Molecular biology Flashcards
1
Q
DNA Polymerase 1
A
- prokaryotes
- gene A
- replication, recombination and repair
1. 5’-3’ DNA dependent DNA polymerase ⇒ replace primer
2. 3’-5’ exonuclease ⇒ proof reading
2. 5’-3’ RNA dependent DNA polymerase - gap filling following DNA replication, repair and recombination
2
Q
DNA Polymerase alpha
A
- eukaryotes
1. 5’-3’ DNA dependent RNA polymerase
2. Primase activity
3
Q
DNA Polymerase 2
A
- prokaryotes
- gene B
- not DNA dependent
- DNA proofreading and repair
- mitochondrial DNA synthesis
4
Q
DNA Polymerase beta
A
- eukaryotes
- repair
5
Q
DNA Polymerase 3
A
- prokaryotes
- gene B
- 5’-3’ DNA dependent DNA polumerase
- 3’-5’ exonuclease
- subunits:
- alpha: polymerase
- epsilon: 3’-5’ exonuclease
- theta: assist epsilon
- Associated accessory proteins:
- beta x2: sliding clamp increase processibility
- tao: dimerise 2 core proteins ⇒ tethring
- gamma
- delta
- delta’
6
Q
DNA Polymerase epsilon
A
- eukaryotes
1. 5’-3’ DNA dependent DNA polymerase
2. synthesis of leading strand
7
Q
DNA A Protein: Initator
A
- prokaryotes
- binds Ori sequence
- unwinds DNA
- load Helicase
- 150 to 250 bp
- ATP dependent
8
Q
DNA polymerase gamma
A
- eukaryotes
1. DNA dependent DNA polymerase
2. Synthesis of Mt DNA
9
Q
DNA B: Helicase
A
- prokaryotes
- DNA B is not an active helicase when in the P/dnaB/O complex
- P is removed by heat shock proteins (dnaK, dnaJ, GrpE)
10
Q
DNA Polymerase delta
A
- eukaryotes
1. 5’-3’ DNA dependent DNA polymerase
2. synthesis of lagging stand
11
Q
DNA C: Deliver and loads helicase
A
- prokaryotes
- stabilizes DNA B ⇒ DNA C leaves the complex
- binding of C to B is ATP dependent
12
Q
ORC
A
- eukaryotes
- ORC= origine replication compkex
- binds a 11 bp sequence called origin replication element ORE, fond in ARS
- DUE= DNA unwinding element
13
Q
SSB
A
- prokaryotes
- stabilizes unwound DNA
14
Q
RPA
A
- eukaryotes
- replication protein A
15
Q
DNA G
A
- prokaryotes
- prime DNA synthesis
16
Q
RNAase
A
- eukaryotes
- eukaryotic polymerase don’t have exonuclease activity
17
Q
Gyrase
A
- prokaryotes
- negatively supercoil DNA (topoisomerase2)
18
Q
RNAase H
A
- both prokaryotes and eukaryotes
- 3’-5’ exonuclease
- remove RNA primer
19
Q
DNA ligase
A
- both prokaryotes and eukaryotes
- ligates the okasaki fragments of the lagging stand ⇒ ATPase
20
Q
Prokaryotic transcription
A
- RNA transcript ⇒ mRNA
- RNA can be polycitronic ⇒ encode for new proteins
- transriptic + translation simultaneously and same place
- RNA polymerase enoguh for transcription
- TATA box closer to coding part of gene
- 1 RNA polymerase
- shorter life time of mRNA
- RNA polymerase slides along double helix DNA until reaches promoter sequence
- promoter sequence recognized by sigma factor
- once RNA pol. reaches promoter ⇒ it latches on
- helix is opened in front of it and polymerization begins
- sigma factor is released
21
Q
Eukariotic transcription
A
- RNA transcript is modified
- mRNA only encodes 1 protein (monocitronic)
- transcription happens before, in the nucleus ⇒ translation in cytosol
- RNA polymerase requires transcription factors
- TATA box further from coding part of gene
- 3 RNA polymerase
- longer lifetime of mRNA because of cap/tail
22
Q
RNA polymerase
A
- prokaryotes
1. alpha: recognise regulatory factors
2. beta: polymerase activity, binds Mg2+ ions and composes the catalytic subunit
3. beta’: binds DNA template
4. w: unknown function
5. sigma: enables the core enzyme to recognize and bind the promoter region to form the pre initiation complex PIC
6. 30-50bp/min
7. no proof reading