Matrices Flashcards

1
Q

Matriz

A

es un arreglo de n° ordenados en “m” filas y “n” columnas

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Matrices rectangulares

A
matriz fila (1xn)
matriz columna (mx1)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Matrices cuadradas

A
matriz diagonal 
matriz identidad 
matriz escalar 
matriz triangular superior 
matriz triangulas inferior
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Matrices genéricas

A
matriz nula 
matriz opuesta (A+(-A)=0)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Suma

A

A y B de igual orden

A+B=B+A
A+(B+C)=(A+B)+C
A+O=A
A+(-A)=O

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Producto por K

A

K pertenece a los reales; se multiplica a cada elemento por K

K(A+B)=KA+KB
(K1+K2)=K1A+K2A
(K1.K2).A=K1.(K2.A)
1A=A

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Producto entre matrices

A

Amxp.Bpxn=Cmxn

```
A.B).C=A.(B.C
A.(B+C)=A.B+A.C
K(A.B)=(KA).B
AI=A
A.O=O
A.B NO ES B.A
~~~

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Potencia

A

A^p= A.A.A.A.A.A…. p veces

A^o=I
A^p.A^r=A^p+r
(A^p)^r=A^(p.r)
(KA)^p=K^p.A^p
I^p=I
(A+B)^p=(A+B).(A+B).(A+B)..... p veces
(A.B)^p=(A.B).(A.B).(A.B)..... p veces
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Transposición

A

Amxn / A^tnxm

```
A^t)^t=A
(A+B)^t= A^t+B^t
(A.B)^t=B^t.A^t (DEMOSTRAR
(KA)^t= K.(A^t)
(A^p)^t=(A^t)^p
~~~

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Traza

A

la traza es la suma de los elementos de la diagonal principal

tr(A+B)=trA+trB
tr(kA)=k.trA
tr(In)=n
tr(A.B)=tr(B.A)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Matriz simétrica

A

A=A^t

sean A y B simétricas:
A+B es simétrica (DEMOSTRAR)
A+A^t es simétrica (DEMOSTRAR)
KA es simétrica (DEMOSTRAR)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Matriz anti-simétrica

A

A=-A^t

sea An entonces
A-A^t es anti-simétrica (DEMOSTRAR)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Matriz inversa

A

A.A^-1=I
se obtiene igualando a A con I

(A^-1)^-1=A 
(KA)^-1=K^-1. A^-1 
(A^p)^-1=(A^-1)^p
(A^t)^-1=(A^-1)^t
(A.B)^-1=B^-1.A^-1
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Teorema de la unicidad

A

sea An una matriz inversible entonces la inversa de A es única
(DEMOSTRAR)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Matriz ortogonal

A

es una matriz cuadrada de orden An con determinante +1 ó -1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

An es ortogonal si y solo si …

A

A^t=A^-1

17
Q

Operaciones elementales

A

permutación
múltiplo por un k
sumarle a una fila el multiplo un un k de otra

18
Q

matriz elemental

A

es cuando la matriz I se le aplica UNA operación elemental

19
Q

matriz equivalente

A

si a una matriz se le aplica un n° finito de operaciones elementales estas son equivalentes
A~A’

20
Q

A es equivalente a I si y solo si …

DEMOSTRAR TEOREMA

A

A es inversible

21
Q

matriz escalonada

A

sea Amxn
sus filas no nulas comienzan con un 1 y el 1 de la siguiente fila se encuentra a la derecha del anterior
las final nulas se encuentran al final

22
Q

matriz escalonada reducida

A

son matrices escalonadas donde las columnas de los 1 principales estan compuestos por ceros

23
Q

Rango

A

es el n° de filas no nulas que tiene la matriz en su forma escalonada

p(O)=0
p(In)=n

24
Q

si A es cuadrada entonces …

A

A es invertible
p(A)=n
A~I
A es producto de matrices elementales