MATEMATIČKI MODELI I STRUKTURA MATEMATIKE Flashcards

1
Q

Matematički model

A

je približni opis neke pojave ili objekta u stvarnom svijetu uz pomoć matematičke
simbolike.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Matematičko modeliranje

A

je proces matematičke reprezentacije nekog fenomena s ciljem njegovog
boljeg razumijevanja.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Zaključivanje

A

je način mišljenja kojim se iz jednog ili više sudova izvodi jedan novi sud.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Tri vrste zaključivanja:

A

indukcijom, dedukcijom, po analogiji.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Aksiom

A

je tvrdnja koja se bez dokaza prihvaća kao istinita.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Teorem

A

je tvrdnja čija se istinitost dokazuje tj. izvodi logičkim zaključivanjem iz aksioma

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Lema

A

teorem koji sam za sebe nije od posebnog interesa nego služi kao dio dokaza nekog važnijeg i
složenijeg teorema.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Korolar

A

teorem koji je neposredna posljedica drugog, prethodno dokazanog, teorema čiji je dokaz
toliko očigledan da ga se obično ispušta

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Princip matematičke indukcije provodi se u dva koraka:

A

Baza indukcije i korak indukcije

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Baza indukcije

A

Treba dokazati da tvrdnja vrijedi za n = 1, tj. da vrijedi P(1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Korak indukcije

A

. Pretpostavimo da tvrdnja vrijedi za n = k i dokazati da onda vrijedi i za n = k +
1. Odnosno, P(k) ⇒ P(k + 1).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly