Legume-Rhizobium Symbiosis I Flashcards
(82 cards)
1
Q
Structure
A
1.
2.
3.
2
Q
legumes
A
- Fabaceae/Leguminosaea
- Eurosid I clade
- FaFaCuRo
- 3rd largest plant Family (19,400sp.)
- not all nodulate
- evolved once
- multiple losses
3
Q
FaFaCuRo
A
- Fabales
- Fagales
- Cucurbitales
- Rosales
4
Q
FaFaCu
A
- nodule w/ actinorhizzal bacteria (Frankia)
5
Q
Fabales
A
- 95% Fabaceae
- 5% milkweed
6
Q
legume subfamilies
A
- Mimosoideae
- Caesalpinoidaea
- Faboideae (Papilionoideae)
7
Q
Give a non-nodulating clade
A
rare in the Caesalpinioideae
8
Q
1x non-legume host
A
- Parasponia, Rosales
- recent
9
Q
Glycine max
A
- soybean
- typical agricultural legume
- 1.1Gb polyploid
- nodulates w/ Bradyrhizobium japonicum
- pea-sized nodules
- twice as much protein/acre as any other major vegetable/grain crop
- 5-10x ^ protein/acre than land for grazing animals to make milk
- 15x ^ protein.acre than land set aside for meat production
10
Q
Arabidopsis
A
- Brassica
- does not nodulate
11
Q
Medicago truncatula
A
- model indeterminate plant
- 375Mb
12
Q
Lotus japonica
A
- model determinate plant
- 470Mb
13
Q
Give the advantages of M. truncatula and L. japonica
A
- small, diploid genomes
- tractable for genetics
- easy to transform
14
Q
Pisum sativum
A
- HUGE diploid genome
- hundreds of accessions sequenced
- syteny mapping
- nodulation mutants in M. truncatula already exist in pea
15
Q
Rhizobiaciae
A
- alpha + betaproteobacteria
16
Q
Rhizobiaciae alpha-proteobacteria
A
1) Rhizobium
2) Bradyrhizobium
3) Azorhizobium
4) Ensifer
5) Mesorhizobium
17
Q
Rhizobiaciae beta-proteobacteria
A
1) Burkholderia
2) Cupriavidus
18
Q
Rhizobium leguminosarum
A
- 5Mb chromosome
- 6x large plasmids
- pRL10 (sym)
19
Q
sym
A
- nod
- nif
- fix
- unique to the symbionts
20
Q
Bradyrhizobium
A
- 8.7Mb large chromosomes
- sym island
- no plasmids
21
Q
Detection of plant signal
A
i) plant releases flavonoid inducers from the isoprenoid pathway
ii) NoDR produces nod TA
22
Q
flavonoids
A
- class name for flavones, isoflavones and flavanones
- species specific
23
Q
NoDR
A
LysR family
24
Q
nod
A
- Nod factor
- lipochitooligosachharide (LCO) synthesis
- 1,4-acetylglucosamine backbone + species specific modifications
25
Nodulating counter-signal
- R. leguminosarum pRL10 Nod gene activation
- NodD binds Nod box promoter region
- species specific, complementary recognition
26
pRL10 Nod genes
- NmLEFDABCIJ
- gene products: nodABCD
27
plant host range
- depends on nod genes
- broad (NGR234)
- narrow (b.v. trifolii)
28
NGR234
- cyanobacterium
- suite of Nod factors
- >200 genera
- T3SS
- mutation of effector proteins causes infection of different legumes
29
b.v. microfolii
clover
30
biovars
- sym transplantation: changes nodulation specificity
- genomic equivalence, different ecology
31
LCOs
- up to 14 sugars
- saturation positions: substitutable
- chitin-like amino sugars
- aka Nod factors
- basic structure: long chain lipid
- sulphate group addition
- 4/5 sugar decoration provides complementation
- + P/O
- insufficient for sp. TF production
32
R. leguminosarum b.v. viciae
- different saturation
- carbonyl groups
33
A. caulinodans
- rare
- tropical tree legume
- 2 sugars on reducing end
34
pea + red/white clover
- Nod factor differ @ a single saturation point
35
Host-plant recognition
i) plant detects LCOs
ii) bacteria attach @ root hair Zone II
iii) deformation: curling
iv) cell nucleus aligns closely w/ infected bacteria; moves ahead of growing IT
v) PITs form ahead of IT
vi) topological extracellularity
36
attachment
stimulates nodule formation opposite protaoxylem pole
37
curling
- characteristic
- flavonoid reduction
- traps bacteria: infection foci
- closed pocket: plant cell wall disruption
- hole changes vascular turgour pressure; sealed cap
- modified to form infection thread
38
PITs
- pre-infection threads
- root hair tip in growth
39
Once the bacteria reach the epidermal cell
i) IT moves into cortical cells beneath epidermis
ii) ramification, branching and distribution; multiple ITs spread thru cortex
iii) nuclear alignment moves down, just behind IT; signal transmission
40
nuclear alignment
controlled by axial actin cables
41
Describe nuclear signal transmission behind the IT
- epidermis -> cortical layer -> inner cortex
- formation of the discrete nodule primordial
42
Cellular components of infection
- Ca2+ gradient
- small G proteins
- dynamic F actin and microtubules
43
Ca2+ gradient in infection
- spiking
- Golgi-derived vesicle fusion
- deliver cell wall and matrix materials as well as signalling components
- cell wall flexibility
44
small G proteins in infection
- localise to the apex
- determine growth
45
dynamic F actin and microtubules
- subapical
- vesicle deliver
- PM protein turnover
46
LCORs
- allow signal transmission
47
LjLCORs
- NFR1/5
48
LjNFR1
- specific receptor kinase
- Lysm EC domain
- heterodimerisation
49
LysM
- PRR
- detects chitin
50
LjNFR5
- DEAD domain
51
Common symbiosis pathway - the basics
- mutating early genes prevents both
52
Common symbiosis pathway - how does it work?
i) Nod + Myc factors activate LRR-kinase pairs, cation channels and nucleoproteins
ii) Ca2+ spiking
iii) CCaMK activation
iv) specific TFs activate either nod or myc
53
CCaMK
- calcium and calmodulin dependent kinase
- e.g. SYM RK
54
The full mechanism of infection
1) LCO activates NFR5
2) Mevalonate initiates nuclear signalling
3) Castor/Pollux activation
4) CNGC15 activation
5) Dmi3 activation; phosphorylates Cyclops
6) Cyclops activates NSP1/2
7) NSP1/2 activate ERN + NIN
8) MCA8 rebalanced Ca2+
55
mevalonate
- secondary messanger
- soluble
- initiates nuclear signalling
56
Castor/Pollux
- K+ channel
- membrane hyperpolarisation
57
CNGC15
- large, voltage-gated C2+ channel
- complexes with Castor/Pollux
- NE into nucleus
- flood cell
58
Dmi3
- CCaMK
- takes hours to activate
59
NSP1/2
- TFs
- dimerise
60
ENODs
- early nodulation genes
- ERN + NIN
61
NIN
- master nodulation regulator
- constitutive oe in strawbs (Rosales): nodule-like structures
62
MCA8
Ca2+ ATPase
63
cortical signalling
- cytokinin
- near protaoxylem pole
64
epidermal signalling
2x parallel pathways for bacterial infection and nodule formation
65
lhk, cre1
- GOF mutants
- activate NSP1/2, ERN + NIN
- nodulate (initial sinals)
- cytokinin Rs
66
NSP1/2, ERN + NIN
- inhibit PAT; accumulation
67
Genes involved in bacterial infection
- Cerberus
- RPG
- FLOT2/4
68
Genes invalid in signalling
- SYMRK
- NUP85, 133
- Castor/Pollux
- CCaMK
- Cyclops
- NSP1/2
69
Genes involved in induction
- ERN1
- NIN
70
genes involved in nodule organogenesis
ERF1
71
Nodules
- modified lateral roots
- derived from cortical cells
- distinct hormonal signals
- common regulators
72
lateral roots
derived from dividing pericycle cells
73
Give some common regulators of nodule and lateral root organogenesis
- YUCCA
- LBD16
74
nodule number is inhibited by
- CEP
- CLE
75
CEP
- soil nitrate
76
CLE
- shoot
- existing nodule bacteria
77
CLE-RSI/2
- Clea pepotides
- respond to Rhizobia presence and nitrate levels
78
CLE R
- LRR
- root
- inhibits miRNA 2111
79
miRNA 2111
- inhibits TML
80
TML
- too much love
- inhibits nodulation
81
N starvation?
- increased SEP
- binds CRA2
- stimulates miRNA 2111
82
competition
- inoculants against residents
- 150year "effectiveness" problem