Lecture 22- Genomic Imprinting and Dynamic Mutation Flashcards
Genomic Imprinting
Restriction of the expression of a gene (to either paternal or maternal allele). Expression of only one!
an ‘epigenetic phenomenon’
When an epigenitic trait occurs to only one parent
~0.1 mammalian genes show imprinting
Epigenetics
an epigenetic trait is a stably heritable phenotype resulting from changes in a chromosome WITHOUT alterations in the DNA sequence. (altering instead gene expression)
Different expression from genetically identical alleles
a change in phenotype without a change in genotype
Operates at transcriptional level, eg)
- DNA (eg: to Cytosine) methylation: CPG islands placed at start of gene (promotor)
- Histone modification
Two syndromes that occur when genetic imprinting occurs due to methylation at the region of chromosome 15 at q11
-A deletion of 15q11-q13
Prader-willi Syndrome (70-75% paternal copy deleted)
Angleman Syndrome (60% maternal copy deleted)
Both have overlapping clinical phenotypes
Prader-Willi Syndrome CF
- failure to thrive
- neonatal hypotonia
- rapid weight gain after one year
- behavioural obesity/ short stature
- small hand and feet
- behavioural issues
Prader-Willi Syndrome
Loss of PATERNAL segment of chromosome 15q11-q13
Due to imprinting, the MATERNAL normal copy is usually imprinted (and therefore silenced).
BOTH issues need to occur to get this syndrome
Why chromosome 15q11-q13
recognised that distinct segments of this are required for normal development
Anglemans Syndrome CF
- ‘happy children’
- mental retardation
- hypotonia
overlapping phenotypes
Anglemans Syndrome
Loss(deletion) of MATERNAL segment of chromosome 15q11-q13
THe paternal segments is usually imprinted (silenced) (by methylation usually)
Other ways (apart from having one deleted + one imprinted allele) you can get anglemans and prader-willi syndrome
Uniparental disomy= embryo inherits 2 copies of a locus from one parent and non from the other (PW only two imprinted maternal alleles. AM only 2 imprinted paternal alleles)
Imprinting Centre mutations: or deletions: screw up the switches of taking away methyl group
This is because 15q11-q13 contains BOTH paternally and maternally expressed genes
Role of DNA methylation in imprinting
Methylation of DNA plays a huge role in controlling gene expression.
-Occurs at cytosine residues in ‘CpG islands’
CpG methylation at promoters causes ‘transcriptional silencing’
CpG methylation is transmitted through cell divisions by methytransferase enzymes
Gamete specific methylation
CpG islands
> 200bp regions of DNA with lots of G+C , located mainly in PROMOTER regions
Application and removal of imprinting
Female: imprinting established during oocyte maturation
male: imprinting establish prior to meiosis in primary spermatocyte
demethylation of these occur in early embryo. Primordial germ cells remain unmethylated.
This may vary between tissues and rarely parent dependent
Methylation changes are also associated with cancer
Methylation of things that usually prevent cancer, ‘tumor suppressant genes’
-inherited predisposition: by inheriting a copy of gene from a parent thats methylated and that turns of a preventative cancer gene, and if the other parents gene gets damaged > cancer
- Somatic methylation changes: meethylation ‘turns on’ a tumor.
eg) one parent has mutated BRCA gene, and the other parents normal gene gets turned off by methylation > cancer
Inherited predisposition: Beckwith-Wiedemann syndrome
Pre/post natal overgrowth.
Increased tumor predisposition. (wilms tuor)
inherited methylation of genes that normally stop genes growthing (growth suppressors)
Somatic methylation changes in cancer.
CCND1: gene that drives mitotic cell division
the more methylation (turning off) of this genes, the SLOWER GROWING the tumor is
The less methylation, the more genes and the more rapid the tumor growth!