Lecture 15 Flashcards
1
Q
Inverse power iteration
A
A-1 x = 1/λ x |1/λn| > ... > |1/λ1| xk+1 = A-1 xk xk → (1/λn)^k αn un, converges to un λn = (unT A un) / (unT un)
2
Q
Inverse power iteration steps
A
1. factorize PLU=A Ax{k+1}=xk so LUx{k+1}=P.T xk 2. Solve Ly=P.T xk 3. Solve U.x{k+1}=y 4. Normalize x{k+1}=x{k+1}/||x{k+1}||
3
Q
Cost of computing largest eigenvalue? Smallest?
A
O(n2) vs O(n3) – indeed factorization n3
4
Q
eigenvalue of (A+B/2)^-1?
A
2/(2λ1+λ2)
5
Q
Inverse power method shifted matrix
A
(A-σI)^-1 x = ƛx
xk+1=(A-σI)^-1 xk
converges to largest ƛ, smallest (λ-σ), that is λ closest to σ (not |λ|!!!)
6
Q
Inverse power method shifted matrix steps
A
- Factorize B=(A-σI)=PLU
- Solve Ly=P.T xk
- Solve Uxk+1 = y
O(n^3))
7
Q
Convergence inverse power method shifted matrix
A
||ek+1|| = |(λclosest - σ)/(λ2ndclosest - σ)| ||ek||
8
Q
Rayleigh quotient iteration
A
inverse power method shifted matrix xk+1=(A-σkI)^-1 xk
(A-σkI) with σk updated at each iteration s.t. σk=xkT.A.xk/xkT.xk, convergence close to cubic, but cost per it n^3