Lecture 10 Flashcards
Norm properties
||x||: R^n > R0+ norm if
- ||x|| > 0 iff x≠0
- ||γx|| = |γ| ||x||
- ||x+y|| ≤ ||x|| + ||y||
p-norms (1, 2, ∞)
||(x1 xn)||_p = sqrt^p(|x1|^p + … + |xn|^p)
||x||_1 = |x1| + ... + |xn| ||x||_2 = sqrt(x1^2 + ... + xn^2) ||x||_∞ = max_i |xi|
Unit balls (1, 2, ∞)
circle, diamond, square
If p<1?
unit ball not convex, triangle inequality contradicted
Distance between x and y
||x-y||
Magnitude of error of a vector
||trueval - appval||
abs/rel errors of approximating (40.114, -88.224) as (40,-88)?
abs = ||x-^x||_2 = 0.2513 rel = ||x-^x||_2 / ||x||_2 = 2.59e-3
Frobenius norm
Matrix norm, flatten and use vector norm:
||A||_F = sqrt(sum_i,j aij^2)
Induced matrix norms (general)
maximum amplification of the norm of any vector multiplied by the matrix
||A|| = max_{||x||≠0} ||Ax||/||x||
= max_{||y||=1} ||Ay||
Induced matrix norms (1, 2, ∞)
||A||_1 = maxj sum(i:1>n) |Aij| (max of abs column sum) ||A||_∞ = maxi sum(j:1>n) |Aij| (max abs row sum) ||A||_2 = maxk σ_k (singular value)
Matrix norms properties
vector norm properties + submultiplicativity:
- ||Ax|| ≤ ||A|| ||x||
- ||AB|| ≤ ||A|| ||B||
∞ norm:
1 2
3 4
7
1 norm:
1 2
3 4
6
You are given for A, 3 vectors x, y, z. ||x||=2, ||y||=1, ||z||=3 and ||Ax||=20, ||Ay||=5, ||Az||=90, what’s the largest lower bound for ||A|| you can derive?
max(||Ax||/||x||, …) = 30
2 norm:
100 0 0
0 13 0
0 0 0.5
100