Lecture 14 Flashcards
Range(A)
{y = Ax | \forall x}
Null(A)
{x | Ax = 0}
Eigenvector/eigenvalue
x ≠ 0 eigenvector of A if there’s Ax = λx, λ eigenvalue. Usually normalized eigenvectors ||x||=1 (because αx is also eigenvector)
Find eigenvalues
Ax = λx
(A-λI)x=0
p(λ)=det(A-λI)=0 (characteristic polynomial of degree n)
Roots of p(λ) are eigenvalues
Only analytical solutions for n<=4, otherwise approx num –LU would give exact solution if no floating point error.
Eigenvalues properties
Can have zero/complex/negative values. Eigenvalues can have a multiplicity.
A = 1 e e 1 where e=1e-10. Select the correct statement: A) λ1 = 1 B) λ1 = 0 C) λ1 slightly>1 D) λ1 slightly>0
C
Diagonalizable matrices
A nxn with n linearly independent eigenvectors u.
AU = UD, A=UDU-1 similarity transformation of A (D with λi ordered, U non singular)
Power iteration
xk = λ1^k[α1.u1 + α2(λ2/λ1)^k.u2 + … + αn(λn/λ1)^k.un
if k → ∞, xk → α1.λ1^k.u1 multiple of u1.
Rayleigh coefficient
λ= xTAx / xTx
Power iteration normalized
yk = A.x_{k-1}
xk = yk/||yk||
avoids possible overflow or underflow
Power iteration, what if α1=0? (x0 has no component in the dominent eigenvector u1)
theory: xk→λ2^k α2 u2 (converges to u2 instead) BUT usually FP operations will introduce such component and α1≠0.
Power iteration, what if |λ1|=|λ2|?
Does not work, xk→λ1^k α1 u1 + λ2^k α2 u2
- if sign are the same, method will converge to the correct eigenvalue
- otherwise, no convergence
Power iteration error
||ek|| = O(|λ2/λ1|^k)
Power iteration convergence rate
linear, ||ek+1||//||ek|| = |λ2|/|λ1|
Similarity transformation changes eigenvalues/eigenvectors?
changes eigenvectors but not eigenvalues