Integration Identifiers and Processes Flashcards
Describe how to Integrate:
∫ 1 / x²√(4 - x²) dx
Using Trig Substitution:
We first define the sides of the right triangle using the fact that:
a² + b² = c² and a = √[c² - b²] making:
a = √[c² - b²],
b = x
c = 2
Describe how to Integrate:
∫ sin³θ dθ
Use Trig Identities along with U Substitution:
Change: ∫ sin³θ dθ → ∫ (1 - cos²θ)sinθ dθ
Now make U = cosθ, dU = - sinθ dθ
- ∫ (1 - u²) dU → ∫ u² - 1 dU
Then Integrate as a typical function subbing in cosθ where possible.
Explain the process of solving:
Start by converting the sin⁵(11x) to a solveable form of [sin²11x]²sin11x
Then convert the inner sin²11x to [1-cos²11x] so that we can solve using u-sub
∫ [1-cos²11x]²sin(11x)dx → u = cos11x; du = -11sin11x
∫ [1 - u²]²du → ∫ [1 - u²]²du → ∫ [1 - 2u² + u⁴]du → u - 2u³/3 + u⁵/5
cos(11x) - 2cos³(11x)/3 + cos⁵(11x)/5 + C
We want to convert cos(4x) into something more workable so we use cos(2*2x) and set u = 2x; du = 2dx
10(1/2) ∫ √[1 + cos2u] du
Then use the trig identity: cos2u = 2cos²u - 1
5 ∫ √[1 + (2cos²u - 1)] du → 5 ∫ √[2cos²u] du → 5 ∫ √[2]cosu du
5√[2]sin2x