Immunity Flashcards
What is an antigen?
A foreign protein which can trigger an immune response leading to the production of Antibodies
How are cells identified by the immune system?
● Each type of cell has specific molecules on its surface (cell-surface membrane / cell wall) that identify it
● Often proteins → have a specific tertiary structure (or glycoproteins / glycolipids)
What types of cells and molecules can the immune system identify?
- Pathogens (disease causing microorganisms) eg. viruses, fungi, bacteria
- Cells from other organisms of the same species (eg. organ transplants)
- Abnormal body cells eg. tumour cells or virus-infected cells
- Toxins (poisons) released by some bacteria
Describe the process of phagocytosis
- Phagocyte attracted by chemicals & recognises foreign antigens on pathogen
- Phagocyte engulfs pathogen by surrounding it with its cell membrane
- Pathogen inside phagosome, which fuses with lysosomes
- Lysosomes release lysozymes, hydrolysing pathogen and digesting it
Describe specific immune response
- APCs contain antigen and may be infected cells, phagocytes etc
- T Helper Cell receptor binds to complimentary antigen
- Clonal selection and expansion happens through Mitosis
Describe the humoral response by B cells
- Clonal selection:
● Specific B lymphocyte with complementary receptor (antibody on cell surface) binds to antigen
● This is then stimulated by helper T cells (which releases cytokines)
● So divides (rapidly) by mitosis to form clones - Some differentiate into B plasma cells → secrete large amounts of (monoclonal) antibody
- Some differentiate into B memory cells → remain in blood for secondary immune response
Describe the action of T Lymphocytes
Specific helper T cells with complementary receptors (on cell surface) bind to antigen on
antigen-presenting cell → activated and divide by mitosis to form clones which stimulate:
● Cytotoxic T cells → kill infected cells / tumour cells (by producing perforin)
● Specific B cells (humoral response - see below)
● Phagocytes → engulf pathogens by phagocytosis
What are antibodies?
● Quaternary structure proteins (4 polypeptide chains)
● Secreted by B lymphocytes eg. plasma cells in response to specific antigens
● Bind specifically to antigens forming antigen-antibody complexes
Explain how antibodies lead to the destruction of pathogens
● Antibodies bind to antigens on pathogens forming an antigen-antibody complex
○ Specific tertiary structure so binding site / variable region binds to complementary antigen
● Each antibody binds to 2 pathogens at a time causing agglutination (clumping) of pathogens
● Antibodies attract phagocytes
● Phagocytes bind to the antibodies and phagocytose many pathogens at once
What is a vaccine?
● Injection of antigens from attenuated (dead or weakened) pathogens
● Stimulating formation of memory cells
Explain how a vaccine provides protection to individuals against disease?
- Specific B lymphocyte with complementary receptor binds to antigen
- Specific T helper cell binds to antigen-presenting cell and stimulates B cell
- B lymphocyte divides by mitosis to form clones
- Some differentiate into B plasma cells which release antibodies
- Some differentiate into B memory cells
- On secondary exposure to antigen, B memory cells rapidly divide by mitosis to produce B plasma cells
- These release antibodies faster and at a higher concentration
Explain how vaccines provide protection for populations against disease?
● Herd immunity - large proportion of population vaccinated, reducing spread of pathogen
○ Large proportion of population immune so do not become ill from infection
○ Fewer infected people to pass pathogen on / unvaccinated people less likely to come in contact
with someone with disease
Explain the effect of antigen variability on disease and disease prevention?
● Antigens on pathogens change shape / tertiary structure due to gene mutations (creating new strains)
● So no longer immune (from vaccine or prior infection)
○ B memory cell receptors cannot bind to / recognise changed antigen on secondary exposure
○ Specific antibodies not complementary / cannot bind to changed antigen
Describe the replication of HIV in T Helper Cells
- HIV attachment proteins attach to receptors on helper T cell
- Lipid envelope fuses with cell-surface membrane, releasing capsid into cell
- Capsid uncoats, releasing RNA and reverse transcriptase
- Reverse transcriptase converts viral RNA to DNA
- Viral DNA inserted / incorporated into helper T cell DNA (may remain latent)
- Viral protein / capsid / enzymes are produced
a. DNA transcribed into HIV mRNA
b. HIV mRNA translated into new HIV proteins - Virus particles assembled and released from cell (via budding)
Explain how HIV causes the symptoms of acquired immune deficiency
syndrome (AIDS)
● HIV infects and kills helper T cells (host cell) as it multiplies rapidly
○ So T helper cells can’t stimulate cytotoxic T cells, B cells and phagocytes
○ So B plasma cells can’t release as many antibodies for agglutination & destruction of pathogens
● Immune system deteriorates → more susceptible to (opportunistic) infections
● Pathogens reproduce, release toxins and damage cells