drug MoAs! Flashcards
name penicillins
penicillin G (IV, IM) penicillin V (oral) methicillin
prototype B-lactam antibiotics
penicillin: MoA
B-LACTAM: binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
activate autolytic enzymes
penicillin: clinical use
mostly Gram(+)
also used for: N. meningitidis, T. pallidum, syphilis
not penicillinase resistant
penicillin: toxicity
hypersensitivity reactions
hemolytic anemia
penicillin: resistance
B-lactamases cleaves B-lactam ring
name penicillinase-resistant penicillins
oxacillin, nafcillin, dicloxacillin
**NOD if you’re penicillinase resistant!
penicillinase-resistant penicillins: MoA
B-LACTAM: binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
narrow spectrum
penicillinase resistant because bulky R group blocks access of B-lactamase to B-lactam ring
penicillinase-resistant penicillins: clinical use
S. aureus (except MRSA, which has an altered PBP)
penicillinase-resistant penicillins: toxicity
hypersenstivity reactions
interstitial nephritis
name aminopenicillins
B-LACTAM: ampicillin, amoxicillin
**AMinoPenicillins are AMPed-up penicillin
aminopenicillins: MoA
binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
wider spectrum
penicillinase sensitive (+clavulanic acid)
oral bioavailability: ampicillin > amoxicillin
aminopenicillins: clinical use
H. influenzae, E. coli, Listeria, Proteus, Salmonella, Shigella, enterococci
**ampicillin/amoxicillin HELPSS kill Enterococci.
aminopenicillins: toxicity
hypersensitivity reactions
ampicillin rash
pseudomembranous colitis
aminopenicillins: resistance
B-lactamases cleave B-lactam ring
name antipseudomonal penicillins
B-LACTAM: ticarcillin, piperacillin
antipseudomonal penicillins: MoA
binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
wider spectrum
penicillinase sensitive (+clavulanic acid)
antipseudomonal penicillins: clinical use
Pseudomonas spp. and Gram(-) rods
antipseudomonal penicillins: toxicity
hypersensitivity reactions
name B-lactamase inhibitors
CAST
clavulanic acid
sulbactam
tazobactam
cephalosporins: MoA
B-LACTAM: binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
less susceptible to penicillinases
1st generation cephalosporins: clinical use
(cefazolin, cephalexin)
gram(+) cocci, Proteus, E. coli, Klebsiella
**PEcK
2nd generation cephalosporins: clinical use
(cefoxitin, cefaclor, cefuroxime)
gram(+) cocci, Haemophilus influenzae, Enterobacter, Neisseria, Proteus, E. coli, Klebsiella, Serratia
**HEN PEcKS
3rd generation cephalosporins: clinical use
(ceftriaxone, cefotaxime, ceftazidime)
serious gram(-) infections resistant to other B-lactams
ceftriaxone: meningitis, gonorrhea
ceftazidime: pseudomonas
4th generation cephalosporins: clinical use
(cefepime)
increase activity against Pseudomonas and gram(+) organisms
cephalosporins: toxicity
hypersensitivity reactions
vitamin K deficiency
low cross-reactivity with penicillins
increase nephrotoxicity of aminoglycosides
cephalosporins: resistance
altered structure of PBP’s
aztreonam: MoA
MONOBACTAM: binds to PBP3 to prevent peptidoglycan cross-linking
B-lactamase resistant
synergistic with aminoglycosides
no cross-allergenicity with penicillins
aztreonam: clinical use
gram(-) rods only
use for patients who have:
penicillin allergy
renal insufficiency (can’t handle aminoglycosides)
aztreonam: toxicity
usually nontoxic
occasional GI upset
name carbapenems
imipenem/cilastatin, meropenem, ertapenem, doripenem
*imipenem always given with cilastatin (inhibits renal dehydropeptidase I) to decrease inactivation of drug in renal tubules
carbapenems: MoA
B-LACTAM: binds irreversibly to PBPs (transpeptidases) and inhibits peptidoglycan cross-linking
B-lactamase resistant
carbapenems: clinical use
gram(+) cocci
gram(-) rods
anaerobes
broad spectrum but significant side effects limit use to life-threatening infections, or after other drugs have failed
carbapenems: toxicity
GI distress
skin rash
CNS toxicity (seizures)
meropenem has less risk of seizures and is stable to dehydropeptidase I
vancomycin: MoA
binds to D-ala D-ala portion of cell wall precursors to BLOCK PEPTIDOGLYCAN SYNTHESIS
vancomycin: clinical use
gram(+) only
vancomycin: toxicity
nephrotoxicity
ototoxicity
thrombophlebitis
diffuse flushing (red man syndrome)
what is red man syndrome and how can it be prevented?
diffuse flushing
prevented by pretreatment with antihistamines and slow infusion rate
vancomycin: resistance
occurs with amino acid change of D-ala D-ala to D-ala D-lac
bacitracin: MoA
BLOCK PEPTIDOGLYCAN SYNTHESIS
group the 2 types of protein synthesis inhibitors
buy AT 30, CCEL at 50
30S inhibitors: aminoglycosides, tetracyclines
50S inhibitors: chloramphenicol, clindamycin, erythromycin (macrolides), linezolid
name aminoglycosides
gentamicin, neomycin, amikacin, tobramycin, streptomycin
“mean GNATS caNNOT kill anaerobes”
aminoglycosides: MoA
INHIBITS PROTEIN SYNTHESIS: inhibit formation of initiation complex causing misreading of mRNA = block transcription/translation
aminoglycosides: clinical use
severe gram(-) rod infections
synergistic with B-lactams
neomycin for bowel surgery
require O2 uptake = ineffective against anaerobes
“mean GNATS caNNOT kill anaerobes”
aminoglycosides: toxicity
nephrotoxocity (esp with cephalosporin use)
neuromuscular blockade
ototoxicity (esp with loop diuretic use)
teratogenic
“mean GNATS caNNOT kill anaerobes”
aminoglycosides: resistance
transferase enzymes inactivate the drug by acetylation, phosphorylation, or adenylation
name tetracyclines
tetracycine, doxycycline, minocycline, demeclocycline
*demeclocycline: ADH antagonist used as a diuretic in SIADH, rarely used as an antibiotic
tetracyclines: MoA
INHIBITS PROTEIN SYNTHESIS: binds to 30S and prevents attachment of aminoacyl-tRNA
bacteriostatic
tetracyclines: clinical use
Borrelia burgdorferi, Mycoplasma pneumoniae, Rickettsia, Chlamydia
doxycycline is fecally eliminated = can use in patients with renal failure
tetracyclines: toxicity
limited CNS penetration
GI distress: do not take with milk, antacids, or iron-containing preps because divalent cations inhibit its absorption in the gut
children: discoloration of teeth and inhibition of bone growth
photosensitivity
contraindicated in pregnancy
tetracyclines: resistance
decrease uptake into cells or increase efflux out of cells by plasmid-encoded transport pumps
name macrolides
azithromycin, clarithromycin, erythromycin
macrolides: MoA
INHIBITS PROTEIN SYNTHESIS: binds to 50S (23S rRNA portion) and inhibits translocation
bacteriostatic
macrolides: clinical use
atypical pneumonias (Mycoplasma, Chlamydia, Legionella)
STDs (Chlamydia)
gram(+) cocci
macrolides: toxicity
MACRO
motility issues arrhythmia (due to prolonged QT) acute cholestatic hepatitis rash eosinophilia
increases serum concentration of theophyllines, oral anticoagulants
macrolides: resistance
methylation of 23S rRNA binding site
chloramphenicol: MoA
INHIBITS PROTEIN SYNTHESIS: binds to 50S and blocks peptidyltransferase
bacteriostatic
chloramphenicol: clinical use
meningitis (SHiN)
conservative use due to toxicities but often still used in developing countries due to low cost
chloramphenicol: toxicity
anemia (dose-dependent) aplastic anemia (dose-independent) gray baby syndrome (premies, who lack liver UDP-glucuronyl transferase)
chloramphenicol: resistance
plasmid-encoded acetyltransferase that inactivates drug
clindamycin: MoA
INHIBITS PROTEIN SYNTHESIS: binds to 50S and blocks transpeptidation (peptide transfer)
bacteriostatic
clindamycin: clinical use
anaerobic infections in aspiration pneumonia or lung abscesses
oral infections with mouth anaerobes
above the diaphragm: clindamycin
below the diaphragm: metronidazole
clindamycin: toxicity
pseudomembranous colitis (C. diff overgrowth)
fever
diarrhea
linezolid & streptogramins (quinupristin, dalfopristine): MoA
INHIBITS PROTEIN SYNTHESIS at 50S ribosomal subunit
name sulfonamides
sulfamethoxazole (SMX), sulfisoxazole, sulfadiazine
sulfonamides: MoA
BLOCK NUCLEOTIDE SYNTHESIS BY INHIBITING FOLIC ACID SYNTHESIS: PABA antimetabolites inhibit dihydropteroate synthase
bacteriostatic
sulfonamides: clinical use
gram(+)
gram(-)
Nocardia
Chlamydia
UTI: SMX or triple sulfas
sulfonamides: toxicity
hypersensitivity reactions
hemolysis if G6PD deficient
nephrotoxicity (tubulointerstitial nephritis)
photosensitivity
kernicterus in infants
displace other drugs from albumin (ie warfarin)
sulfonamides: resistance
altered enzyme (bacterial dihydropteroate synthase)
decreased uptake
increased PABA synthesis
trimethoprim: MoA
BLOCK NUCLEOTIDE SYNTHESIS BY INHIBITING FOLIC ACID SYNTHESIS: inhibits bacterial dihydrofolate reductase
bacteriostatic
trimethoprim: clinical use
combined with sulfonamides (TMX-SMX), causing sequential block of folate synthesis
used for UTIs, Shigella, Salmonella, Pneumocystis jirovecii pneumonia
trimethoprim: toxicity
megaloblastic anemia
leukopenia
granulocytopenia
*TMP treats marrow poorly
(may alleviate with supplemental folinic acid (leucovorin rescue])
name fluoroquinolones
ciprofloxacin, norfloxacin, levofloxacin, ofloxacin, sparfloxacin, moxifloxacin, gatifloxacin, enoxacin, nalidixic acid
fluoroquinolones: MoA
BLOCK DNA TOPOISOMERASES: inhibit DNA gyrase (topoisomerase II) and topoisomerase IV = interfere with DNA replication
fluoroquinolones: clinical use
gram(-) rods of urinary and GI tracts, Neisseria, some gram(+)
fluoroquinolones: toxicity
GI upset superinfections skin rashes headaches dizziness
less common: tendonitis tendon rupture leg cramps myalgias
contraindicated in pregnant women and children (damage to cartilage)
some may cause prolonged QT interval
fluoroquinolones: resistance
chromosome-encoded mutation in DNA gyrase, plasmid-mediated resistance, efflux pumps