dérivées Flashcards

1
Q

(u+v)’=

A

u’+v’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

(λu)’

A

λu’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

(uv)’

A

u’v+v’u

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

(u/v)’

A

(u’v-v’u)

/v^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

x^n

A

nx^n-1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

1/x

A

-1/x^2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

1/x^n

A

-n/x^n+1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

√x

A

1/2√x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

e^x

A

e^x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

ln(x)

A

1/x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

sin(x)

A

cos(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

cos(x)

A

-sin(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

(v(u(x)))’

A

u’(x)*v’(u(x))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

∀x>0, ∀n∈Z, x^n=

A

exp(n ln(x))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Pour démontrer x^α*x^β=x^(α+β)

A

Ecrire sous la forme: exp(n ln(α))exp(n ln(β))

Puis développer

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Démontrer que √x=x^(1/2)

A

Partir de (√x)^2=x puis utiliser x^n=exp(n ln(x))

17
Q

(u^α)’

A

αu^(α-1)*u’

18
Q

Dériver (u^α(x))’

A

Utiliser (( )^α*(u(x)))’

puis dériver

19
Q

Méthode racines carrées d’un nombre complexe:

A

1)Remplacer z par (a+ib) puis identifier partie réel (1) et partie imaginaire(3).
2) Mettre les modules pour une troisième équation.(2).
3)Additionner 1 et 2 pour avoir a^2
Soustraire 1 et 2 pour trouver b^2
4) 3 sert a savoir si axb est positif ou négatif.
5) 1+2i admet deux racines z1 et z2.