Complexos I Flashcards

1
Q

i^n = i^k

Onde k é o ____ da ____ de n por ____.

A

Onde k é o resto da divisão de n por 4.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

(1 + i) ^ 2 =

A

2i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

(1 - i) ^ 2 =

A

-2i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

(1 + i) / (1 - i) =

A

i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

1 / i =

A

-i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

__

z . z =

A

z | ^ 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

______

(z + w) =

A

_ _

z + w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

_____

(z . w) =

A

_ _

z . w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

_____

(z / w) =

A

_ _

z / w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Expresse de quatro outras formas o número i.

A

[(1 + i) ^ 2] / 2

[(1 - i) ^ 2] / (-2)

(1 + i) / (1 - i)

-1 / i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

z | ^ 2 =

A

__

z . z

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

_ _

z + w =

A

______

z + w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

_ _

z . w =

A

_____

z . w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

_ _

z / w

A

_____

z / w

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Cis(x) =

A

cos(x) + i.sen(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

1 + cis(x) =

A

2 . cos(x / 2) . cis(x / 2)

17
Q

1 - cis(x) =

A

-2 . i . sen(x / 2) . cis(x / 2)

18
Q

Cos(x) + i.sen(x) =

A

cis(x)

19
Q

2 . cos(x / 2) . cis (x / 2) =

A

1 + cis(x)

20
Q

-2 . i . sen(x / 2) . cis (x / 2)

A

1 - cis(x)

21
Q

O complexo z = 1 + cis(x) possui que módulo e que argumento?

A

1 + cis(x) = 2 . cos(x / 2) . cis (x / 2)

Logo o módulo é 2 . cos(x / 2)
e o argumento é x / 2.

22
Q

Cis(x) + cis(-x)

A

2.cos(x)

23
Q

Cis(x) - cis(-x)

A

2.i.sen(x)

24
Q

[ e^(i.x) + e^(-i.x) ] / 2

A

Cos(x)

25
Q

[ e^(i.x) - e^(-i.x) ] / ( 2.i )

A

Sen(x)

26
Q

2.cos(x)

A

Cis(x) + cis(-x)

27
Q

2.i.sen(x)

A

Cis(x) - cis(-x)

28
Q
z = r.cis(x)
w = s.cis(y)

Que conclusões tiramos se z = w?

A

r = s.
x = y + 2.k.pi.
Onde k é um inteiro.

29
Q

Se z^n = r.cis(x),

qual é o valor de z?

A

z = sqrt(r).cis( (x + 2.k.pi) / n ).

Onde k é um inteiro e 0 < n.