Chapter 9: Estimating the Value of a Parameter Flashcards
point estimate
single statistic that estimates a parameter
confidence interval
range of numbers in which we are some % certain the parameter lies
level of confidence
expected proportion of intervals that will contain the parameter if a large number of different samples is obtained
Conditions to construct the confidence interval for p
np̂(1 - p̂) ≥ 10 and 20n ≤ N
Formula for confidence interval for p
p̂ ± z_α/2 sqrt(p̂(1-p̂)/n)
Formula for minimum sample size needed for a particular level of confidence
n = p̂(1 - p̂) ((z_α/2) / E)^2
general form for the confidence interval for a population parameter
(point estimate) ± (critical number)(standard error)
standard error [of the mean]
standard deviation of the sampling distribution of x̄
(1 - α)100% Confidence Interval for μ
x̄ ± t_α/2 * (s/sqrt(n))
(1 - α)100% Confidence Interval for σ
( sqrt( (n - 1)s^2 / χ^2_α/2 ) , sqrt( (n-1)s^2 / χ^2_1-α/2 ) )