Chapter 5 Flashcards
Fallacy
Flawed arguments with either (1) irrelevant premises or (2) unacceptable premises; psychologically persuasive but illogical
Appeal to the Person (Ad Hominem)
- irrelevant premises
* Reject a claim because of the person who makes it
Tu Quoque
- Form of Ad Hominem
- Irrelevant premises
- Implies claim is true/false because it is inconsistent with some aspect of the claimant’s circumstances – i.e. the claimant is a hypocrite
Fallacy of Composition
- irrelevant premises
- what is true of the parts must be true of the whole.
(What is true of a member of a group is true of the group as a whole)
Fallacy of Division
- irrelevant premise
- what is true of the whole must be true of the parts (opp. Of Fallacy of Composition)
(What is true of the group is true of individuals in the group)
Fallacy of Equivocation
- irrelevant premise
• the use of a word in two different senses in an argument.
(A word has one meaning in one premise and another meaning in another premise)
Appeal to Popularity (or the masses)
- irrelevant premise
* arguing that a claim is true because a substantial # of people believe it.
Appeal to Common Practice
- irrelevant premise
• argues that a claim is true because a substantial # of people do it.
Appeal to Tradition
- irrelevant premise
• arguing that a claim must be true just because it’s a part of a tradition. (If it’s not broken, don’t fix it.)
Appeal to Ignorance
- irrelevant premise
• arguing that a lack of evidence proves something.
Burden of Proof
- part of Appeal to Ignorance
* the weight of evidence or argument required by one side in a debate/disagreement.
Appeal to Emotion
- irrelevant premise
* the use of emotions as premises in an argument.
Red Herring
- irrelevant premise
* the deliberate raising of an irrelevant issue during an argument
Straw Man
- irrelevant premise
* distorting, weakening, or oversimplifying someone’s position so it can be more easily attacked or refuted.
Begging the Question
- unacceptable premises
- attempt to establish the conclusion of an argument by using the conclusion as a premise.
o P. Therefore, P.