Chapter 17: Gene Expression Flashcards
Template and coding strand
The template strand provides the pattern for the sequence of nucleotides transcribed by mRNA
The non-template strand or coding strand is the DNA strand that is complementary to the template strand
- Its condons are identical to the mRNA sequence with the substitution of thymine instead of uracil
Codons are read by the translation machinery in the 5’ → 3’ direction
Stop and start codons
AUG is the sole start codon; also codes for methionine
UAA, UAG, and UGA are all stop codons
Transcription components
RNA polymerase- enzyme that pries the two strands of DNA apart and joins complementary RNA nucleotides together
Promoter- sequence of a gene where RNA polymerase attaches to in order to initiate transcription
Transcription unit- the stretch of DNA downstream from the promoter that is transcribed
Terminator- sequence that signals the end of transcription; ONLY present in prokaryotes
Transcription
In prokaryotes
Initiation
RNA polymerase binds itself directly to the promoter and begins transcription
- Untwists DNA and exposes 10−20 nucleotides at a time for pairing with RNA nucleotides
Elongation
Adds nucleotides to the 3’ end of the growing RNA molecule similar to DNA polymerase
Termination
Transcription proceeds through the terminator sequence in the DNA which causes the polymerase to detach and release the transcript which requires no further modification
Transcription
In eukaryotes
Initiation
A collection of proteins called transcription factors help guide the binding of RNA polymerase II to the promoter
- Only after transcription factors are attached to the promoter does RNA polymerase II bind to it
- Entire complex of transcription factors and RNA polymerase II bound to the promoter is called a transcription initiation complex
- A crucial promoter DNA sequence called the TATA box helps form the initiation complex
Untwists DNA and exposes 10−20 nucleotides at a time for pairing with RNA nucleotides
Elongation
Adds nucleotides to the 3’ end of the growing RNA molecule similar to DNA polymerase at a rate of about 40 nucleotides per minute
Termination
RNA polymerase II transcribes the polyadenylation signal sequence; the RNA transcript is released 10−35 nucleotides past this polyadenylation sequence (AAUAAA)
Pre-mRNA then proceeds on for further processing
RNA processing
In eukaryotes
Enzymes in the nucleus modify pre-mRNA before the genetic message is dispatched to the cytoplasm
Both ends of the primary transcript are usually altered
Usually certain interior sections of the molecule are also cut-out and the remaining parts spliced together
Alteration of mRNA ends
In eukaryotes
The 5’ end which is synthesized first receives a 5’ cap of a modified form of guanine
At the 3’ end an enzyme adds 50−250 more adenines after the polyadenylation sequence AAUAAA forming a poly-A tail
5’ cap and poly-A tail have several function:
- Facilitate the export of mature mRNA from the nucleus
- Help protect the mRNA from degradation by hydrolytic enzymes
- Help ribosomes attach to the 5’ end once it reaches the cytoplasm
RNA splicing process
Large portions of the RNA primary transcript molecules are removed and the remaining portions reconnected
The removed segements are noncoding regions called intervening sequences or introns
The other regions called exons that remain are expressed and go to be translated into proteins
The terms introns and exons are use to describe RNA sequences and the DNA sequences that specify them
RNA splicing enzyme
The removal of introns is accomplished by a large complex made up of proteins and small RNAs called spliceosomes
Spliceosomes consist of a variety of proteins and several small nuclear ribonucleoproteins (snRNPs) that recognize the splice sites
This complex binds to several short nucleotide sequences along and intron including key sequences at each end
The intron is then released and the spliceosoe joins together the two exons that flanked the intron
Ribozymes
Ribozymes are catalytic RNA molecules that function as enzymes and can splice RNA
- Not all biological catalysts are proteins
Three properties of RNA enable it to function as an enzyme:
- It can form a three-dimensional structure because of its ability to base-pair with itself; a specific structure is essential to catalytic functioning
- Some bases in RNA contain functional groups that may participate in catalysis
- RNA can hydrogen-bond with other nucleic acid molecules which adds specificity to its catalytic activity
Functional importance of introns
A single gene can encode more than one kind of polypeptide
Many genes are known to give rise to two or more dfferent polypeptides depending on which segements are treated as exons; a process known as alternative RNA splicing
Protein often have a modular architecture that consists of discrete functional and structural regions called domains that impart different properties; different exons code for different domains
Molecular components of translation
A cell translates an mRNA message into protein with the help of transfer RNA or tRNA
Function is to transfer an amino acid from the cytoplasm to a growing polypeptide in a ribosome
Each tRNA molecule enables translation of a given mRNA codon into a specific amino acid
tRNA twists into a 3-D L-shapped structure
- Its 3’ end protrudes from one end and serves as an attachment site for a specific amino acid
- The loop extending from the other end of the L includes the anticodon which is a nucleotide triplet that base pairs with a specific mRNA codon
tRNA-amino acid specificity
The correct matching of tRNA and amino acid is carried out by a family of enzymes called aminoacyl-tRNA synthetases
The active site of each type of aminoacyl-tRNA synthetase fits only a specific combination of amino acid and tRNA
There are 20 different synthetases, one for each amino acid
The synthetase catalyzes the covalent attachment of the amino acid to its tRNA in a process driven by the hydrolysis of ATP
tRNA-mRNA specificity
Some tRNAs are able to bind to multiple codons coding for the same amino acid due to flexible base pairing between the third nucleotide base of a codon
45 tRNAs bind to more than one codon
This flexible base pairing is called wobble which is why synonymous codons for a given amino acid most often differ in their third nucleotide base
Ribosomal structure
Consists of a large and a small subunit made up of ribosomal RNA or rRNA
Ribosome has one binding site for mRNA and three binding sites for tRNA:
- A site is where tRNA enters; holds the tRNA carrying the next amino acid to be added to the chain
- P site holds the tRNA carrying the growing polypeptide chain
- E site is where the empty tRNA exits from