Calculo 1 Test Rapido Flashcards

1
Q

¿Qué es el cálculo diferencial?

A

Es la rama del cálculo que se ocupa del estudio de las tasas de cambio y las pendientes de las curvas.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

¿Cuál es la derivada de la función f(x) = x²?

A

La derivada es f’(x) = 2x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

¿Qué representa la integral definida?

A

Representa el área bajo la curva de una función en un intervalo específico.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

¿Cuál es la regla de la cadena en cálculo?

A

Es una fórmula para derivar la composición de funciones.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

¿Verdadero o falso? La segunda derivada puede indicar la concavidad de una función.

A

Verdadero.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

¿Qué es un límite en cálculo?

A

Es el valor al que se aproxima una función a medida que la variable independiente se acerca a un valor específico.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

¿Cuál es el resultado de la integral indefinida de f(x) = 3x²?

A

La integral indefinida es F(x) = x³ + C.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

¿Qué se entiende por la regla de L’Hôpital?

A

Es una técnica para evaluar límites que presentan indeterminaciones del tipo 0/0 o ∞/∞.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

¿Cómo se denomina la operación inversa de la derivación?

A

Integral.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

¿Qué es una función continua?

A

Es una función que no presenta saltos o discontinuidades en su gráfico.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

¿Qué es el teorema fundamental del cálculo?

A

Establece la relación entre la derivación y la integración, mostrando que son operaciones inversas.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

¿Cuál es la derivada de la función f(x) = e^x?

A

La derivada es f’(x) = e^x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

¿Qué indica la derivada de una función en un punto específico?

A

Indica la pendiente de la tangente a la curva en ese punto.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

¿Qué es una integral impropia?

A

Es una integral en la que uno o ambos límites de integración son infinitos o la función tiene una discontinuidad en el intervalo de integración.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

¿Qué es el método de sustitución en integrales?

A

Es una técnica que simplifica el cálculo de integrales a través de un cambio de variable.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

¿Qué es una serie de Taylor?

A

Es una representación de una función como una suma infinita de términos calculados a partir de sus derivadas en un punto.

17
Q

¿Verdadero o falso? La derivada de una constante es cero.

A

Verdadero.

18
Q

¿Qué representa el coeficiente de la segunda derivada?

A

Indica la concavidad de la función: si es positiva, la función es cóncava hacia arriba; si es negativa, hacia abajo.

19
Q

¿Cuál es la integral de f(x) = 1/x?

A

La integral es F(x) = ln|x| + C.

20
Q

¿Qué son las funciones implícitas?

A

Son funciones definidas por una relación entre variables, no necesariamente expresadas de forma explícita.

21
Q

¿Cómo se llama el proceso de encontrar la derivada de una función en un punto específico?

A

Evaluación de la derivada.

22
Q

¿Qué es un máximo local en una función?

A

Es un punto donde la función alcanza un valor mayor en comparación con sus puntos vecinos.

23
Q

¿Qué se necesita para aplicar la regla de la cadena?

A

Se necesita que ambas funciones sean diferenciables.

24
Q

¿Cómo se define la integral de Riemann?

A

Es la aproximación del área bajo la curva mediante sumas de rectángulos.

25
Q

¿Verdadero o falso? La función f(x) = sin(x) tiene una derivada que es cos(x).

A

Verdadero.

26
Q

¿Qué es la convergencia de una serie?

A

Es cuando la suma de los términos de la serie se acerca a un número finito a medida que se añaden más términos.