4 - complex numbers Flashcards
i
√-1
complex number
has real and imaginary parts
x + yi
imaginary number
multiple of i
bi
i²
-1
realising imaginary numbers
same as rationalising surds - use DOTS
eg 5+4i/2-3i * 2+3i/2+3i
complex conjugate
if z = a + bi
z* = a-bi
zz*
a² + b² (always real)
argand diagrams
can represent real num on num line
for complex add another axis perp to the real num line
Re = x
Im = y
conjugate on argand diagram
reflection in the real axis
x + yi has coordinates (x,y)
radians
1rad = the angle subtended by an arc of length r
1rad = 360/2π = 180/πº
a full turn = 2π rad = 360º
rad> degrees = *180/π
degrees > rad = *π/180
modulus - |z|
the distance from the origin to z
if z = x + yi
|z| = √x²+ y²
argument - arg(z)
the anti-clockwise angle from the real axis in rad
usually in the range -π < θ <= π (principle argument)
arg (z) = tan-1(y/x)
mod-arg form
x = r cos θ
y = r sin θ
z = x + i y
z = r(cos θ + i sin θ) or r cis θ
when r = |z| and θ = arg(z)
-sin θ = sin - θ
cos θ = cos - θ