2 - 3 complex no. and trig Flashcards
cos nθ in terms of cos and sin
let z = cosθ+ i sinθ
write z^n using demoivres
then z^n using binomal expansion
cosnθ = the real part of the binomial expansion
(sin is the imaginary
cos θ and sin as imaginary and exponential
2cos θ= e^iθ + e^-iθ = z+1/z
2isinθ = e^iθ - e^-iθ = z-1/z
if z = e^iθ then
z^n + 1/z^n = 2cos nθ
z^n - 1/z^n = 2isin nθ
sin^nθ in terms of sin
let z = cosθ + i sinθ
(2isinθ)^n = (z-1/z)^n
2i^n sin^nθ = (z-1/z)^n
expand the RHS binomaly
group terms in the z^k -1/z^k form
rewrite using 2isinkθ
rearrange for sin^nθ
(same for cos bu no i and use z + 1/z)
simplifying tirg series
write in exponential and imaginary form
simplify geometrically and take either imaginary or real part (im for sin and re for cos)