16.6 Flashcards

1
Q

inproduct met p^→=(a, b) en q^→=(c, d)

A

= p^→q^→ = ac + b*d = getal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

AB^→

A

=b^→ - a^→

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

|a^→|

A

=lengte a^→
= √ ax²+ay²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

vectorvoorstelling van een lijn

A

l: (x,y)=s^→+t*r^→
s^→=steunvector =punt op de lijn
r^→=richtingsvector=richting van de lijn

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

r^→

A

=richting vector
=∆x/∆y of als je 2 punten heb bv. A en B de vector ab => AB^→

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Wanneer staan p^→ en q^→ loodrecht op elkaar?

A

Als p^→ * q^→ = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

r^→ =(-1, 4)
Wat is de rc van deze lijn?

A

4/-1 = -4

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

bewegingsvergelijking

A

x(t) = r * cos(at)
y(t) = r * sin(at)
r= straal

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

snelheidsvector

A

=v(t)^→
=(x’(t), y’(t))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

(baan)snelheid

A

=v(t)
= ∣v(t)^→∣
=√((x’(t))² + (y’(t))²)
=lengte snelheidsvector

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

versnellingsvector

A

= a(t)^→
=(x”(t), y”(t))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

baanversnelling

A

a(t)
=v’(t)
=[∣v(t)^→∣]’

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Stappenplan zwaartepunt

A

a) Assenstelsel tekenen
b) Figuur massief?
=> Werk met Opp
Figuur Staven?
=> Werk met lengte
c) Opdelen in handige stukken
d) Per deel:
* massa
=> Opp/lengte
* zwaartepunt
=> a1^→
e) zwaartepunt = 1/totale massa * (m1 * z1 + m2 *z2 …)
f) Schrijf coördinaat op

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

c: (x-p)² + (y-q)² = r²
geef de parameter voorstelling van deze cirkel.

A

x = p + rcos(t)
y = q + r
sin(t)
=> handig voor meebewegende punten

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Hoek tussen vectoren

A

Kan > 90⁰
=> Cos(∠(a^→, b^→)
= a^→ * b^→/|a^→| * |b^→ |

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Hoek tussen lijnen

A

Altijd ≤ 90⁰
=> Cos(l, m)
= rl^→ * rm^→/|rl^→| * |rm^→ |