空间几何 Flashcards
向量的加减法公式是什么?
设向量 (\mathbf{a} = (a_x, a_y, a_z)),(\mathbf{b} = (b_x, b_y, b_z)),则:(\mathbf{a} \pm \mathbf{b} = (a_x \pm b_x, a_y \pm b_y, a_z \pm b_z))
几何意义:平行四边形法则或三角形法则
标量乘法(数乘)的定义是什么?
设标量 (k \in \mathbb{R}),则:(k\mathbf{a} = (k a_x, k a_y, k a_z))
几何意义:缩放向量长度,若 (k < 0) 则反向
数量积的定义是什么?
(\mathbf{a} \cdot \mathbf{b} = a_x b_x + a_y b_y + a_z b_z = |\mathbf{a}||\mathbf{b}| \cos\theta)
其中 (\theta) 为两向量夹角
数量积(点积)的性质有哪些?
- 交换律:(\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a})
- 分配律:(\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c})
- 正交条件:(\mathbf{a} \cdot \mathbf{b} = 0 \iff \mathbf{a} \perp \mathbf{b})
如何计算向量的模长?
(|\mathbf{a}| = \sqrt{\mathbf{a} \cdot \mathbf{a}})
也可用于求夹角:(\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|})
向量积(叉积)的定义是什么?
(\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \end{vmatrix} = \left( a_y b_z - a_z b_y, a_z b_x - a_x b_z, a_x b_y - a_y b_x \right))
几何意义:模长为平行四边形的面积,方向垂直于 (\mathbf{a}) 和 (\mathbf{b}) 所在平面
向量积(叉积)的性质有哪些?
- 反交换律:
- 平行条件:(\mathbf{a} \times \mathbf{b} = \mathbf{0} \iff \mathbf{a} \parallel \mathbf{b})
- 分配律:(\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c})
混合积的定义是什么?
(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{vmatrix} a_x & a_y & a_z \ b_x & b_y & b_z \ c_x & c_y & c_z \end{vmatrix})
几何意义:绝对值等于以 (\mathbf{a}, \mathbf{b}, \mathbf{c}) 为棱的平行六面体体积
混合积的性质有哪些?
- 轮换对称性:(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}))
- 共面条件:(\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \iff \mathbf{a}, \mathbf{b}, \mathbf{c}) 共面 即平行六面体体积为0,在同一平面上
判断向量垂直的条件是什么?
(\mathbf{a} \perp \mathbf{b} \iff \mathbf{a} \cdot \mathbf{b} = 0)
若点积为零,则向量垂直
判断向量平行的条件是什么?
(\mathbf{a} \parallel \mathbf{b} \iff \exists k \in \mathbb{R}, \ \mathbf{a} = k\mathbf{b} \quad \text{或} \quad \mathbf{a} \times \mathbf{b} = \mathbf{0})
若叉积为零或分量成比例,则向量平行
如何判断向量的正交与共面关系?
- 点积为零则垂直
- 叉积为零或分量成比例则平行
- 混合积为0则共面