理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法. Flashcards

1
Q

什么是单位向量?

A

模长为1的向量,仅表示方向。

公式为:(hat{a} = rac{vec{a}}{|vec{a}|})

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

什么是方向数?

A

向量的各个分量(a_x, a_y, a_z),表示在各坐标轴上的投影长度。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

方向余弦的计算公式是什么?

A

方向数/模长
(cosalpha = rac{a_x}{|vec{a}|}, quad coseta = rac{a_y}{|vec{a}|}, quad cosgamma = rac{a_z}{|vec{a}|})

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

方向余弦的性质是什么?

A

(cos^2alpha + cos^2eta + cos^2gamma = 1)
方向余弦的平方和和为1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

向量的坐标表达式有哪些形式?

A

用分量或单位向量表示,例如:
* (vec{a} = a_x mathbf{i} + a_y mathbf{j} + a_z mathbf{k})
* (vec{a} = (a_x, a_y, a_z))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

叉积的几何意义是什么?

A

结果向量垂直于原向量所在平面,模长为平行四边形的面积。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

混合积的几何意义是什么?

A

绝对值等于平行六面体的体积。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

单位化向量的步骤是什么?

A

将向量各分量除以模长。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

如何验证方向余弦的平方和为1?

A

各分量除以模长,验证平方和为1。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

如何计算向量(vec{a} = (2, 0, 0))和(vec{b} = (0, 3, 0))的面积?

A

叉积模长为(6),对应平行四边形面积为6。

How well did you know this?
1
Not at all
2
3
4
5
Perfectly