Week 5-8 (Sleep) Flashcards
<p>Define Sleep</p>
<p><u>Sleep</u></p>
<ul> <li>Condition of body and mind</li> <li>Typically recurs for several hours per day</li> <li>Eyes are closed, postural muscles relaxed, and consciousness is practically suspended.</li></ul>
<p>What issleep associated with?(6)</p>
<p><u>Properties of Sleep</u></p>
<ul> <li>Specific postures</li> <li>Inactivity</li> <li>Reduced responsiveness</li> <li>Rapidly reversible</li> <li>Eyes Closed</li> <li>Beahvioural preludes <ul> <li>Pre-sleep behaviour</li> </ul> </li></ul>
<p>What are some wayssleep can be measured? (3)</p>
<ul> <li>EEG: Typically in 30 second epochs <ul> <li>Summed brain-wave activity</li> </ul> </li> <li>EOG <ul> <li>Eye movement</li> </ul> </li> <li>EMG <ul> <li>Muscle Tone</li> </ul> </li></ul>
<p>EEG activity of Wakefulness (Open and Close)</p>
<ul> <li>Wakefulness (Eye open; Active) <ul> <li>Beta Activity (13-30Hz)</li> <li>Desynchrony (Low amplitutde, High Frequency)</li> </ul> </li> <li>Wakefulness (Eye close) <ul> <li>Alpha Activity (8-12Hz)</li> </ul> </li> <li>EEG synchrony develops with sleep (High Amplitude, Low Frequency)</li></ul>
<p>What isthe EEG, EOG, EMG of Wakefulness</p>
<p><u>Wakefulness</u></p>
<p>EEG:</p>
<ul> <li>Mixture of Alpha (dominant) and Beta Waves <ul> <li>"Relaxed Wakefulness"</li> </ul> </li></ul>
<p>EOG:</p>
<ul> <li>High Amplitude</li> <li>Sharp waves represents eyeball movement</li></ul>
<p>EMG:</p>
<ul> <li>Muscle activity present</li></ul>
<p>Describe the EEG, EOG, EMG of Stage 1 NREM</p>
<p><u>Stage 1: Non-REM</u></p>
<p><u>EEG</u></p>
<ul> <li><strong>Theta </strong>Activity (4-7Hz), characteristic of Stage 1</li></ul>
<p><u>EOG:</u></p>
<ul> <li>Slow eye-rolling to reflect dozing off</li></ul>
<p><u>EMG:</u></p>
<ul> <li>Muscle activity present but reduced</li></ul>
<p>Describe the EEG and EOG of Stage 2 NREM</p>
<p><u>Stage 2: Non-REM</u></p>
<ul></ul>
<p><u>EEG:</u></p>
<ul> <li><strong>K Complex</strong> <ul> <li>EEG from negative (up) to positive (down) to baseline quickly</li> <li>Amplitutde >75mV; >0.5s</li> </ul> </li> <li><strong>Sleep Spindle</strong> (Characteristic) <ul> <li>Period of fast/high activity greater than alpha activity.</li> <li>Between 11-16 Hz; > 1s</li> </ul> </li></ul>
<p><u>EOG</u></p>
<ul> <li>Activity picked up likely from EEG</li></ul>
<p>Describe the EOG and EEG of 3.) Non-Rem Sleep</p>
<p>Stage 3: Non-REM</p>
<p><u>EOG</u></p>
<ul> <li>Activity picked up likely from EEG</li></ul>
<p><u>EEG:</u></p>
<ul> <li>Delta Waves <ul> <li>K complexes occurring together</li> <li>Waves large ampltitude, slow frequency waves <ul> <li>>75mV, 0.5-2s</li> </ul> </li> <li>More than 20% of the epochs (6s) contains delta waves (20-50%)</li> </ul> </li></ul>
<p></p>
<p>Describe the EEG and EMG of 4.) Non-Rem Sleep</p>
<p><u>Stage 4: Non-REM</u></p>
<p><u>EEG:</u></p>
<ul> <li>Delta Waves <ul> <li>K complexes occurring together</li> <li>Waves large ampltitude, low frequency <ul> <li>>75mV; 0.5-2s</li> </ul> </li> <li>Once more than 50% of the epochs (6s) contains delta waves</li> </ul> </li></ul>
<p><u>EMG</u></p>
<ul> <li>Muscle tone drops substantially</li></ul>
<p>Summary of Non-REM Sleep</p>
<p>Stage 1: N1</p>
<ul> <li>ThetaActivity <ul> <li>4-7Hz</li> <li>Low in amplitude.</li> </ul> </li></ul>
<p>Stage 2: N2</p>
<ul> <li>K Complexes and Sleep Spindles</li> <li>When K-Complexes get larger and start to merge, delta waves (slow, large amplitude waves)</li></ul>
<p>Stage 3: N3/SWS</p>
<ul> <li>Delta waves >20% of epoch</li></ul>
<p>Stage 4: N3/SWS</p>
<ul> <li>Delta waves >50% of epoch</li></ul>
<p>What are other physiological markers (respiration, heart rate, muscle activity, cognitive activity) of NREM?</p>
<p><u>Respiration and HR</u></p>
<ul> <li>Stable and Regular respiration and HR <ul> <li>Slightly lower than wake</li> </ul> </li></ul>
<p><u>Muscle Tone:</u></p>
<ul> <li>Present (lower than wake)</li></ul>
<p><u>Cognitive Activity</u></p>
<ul> <li>Cognitive activity <ul> <li>Thought-like, rational</li> <li>If woken, would respond rationally (e.g. they’ll say they were thinking about what they were doing during the day). This is different from REM sleep.</li> </ul> </li></ul>
<p>Difficult to rouse from SWS</p>
<p></p>
<p>Describe the EEG, EOG, EMG of REM Sleep</p>
<p><u>REM Sleep</u></p>
<p><u>EEG:</u></p>
<ul> <li>Theta Activity (4-7Hz) <ul> <li>Desyncrhonized EEG Pattern, similar to Stage 1 NREM</li> </ul> </li> <li>"<strong>Sawtooth Waves</strong>" <ul> <li>Small negative to positive deflections</li> <li>Necessary but insufficient for REM (REM + Low muscle activity + Theta)</li> </ul> </li></ul>
<p><u>EOG:</u></p>
<ul> <li><strong>Rapid Eye Movement</strong> <ul> <li>Distinguish from NREM</li> </ul> </li></ul>
<p><u>EMG</u></p>
<ul> <li>Loss of muscle tone/paralysis (except respiration and eye muscle)</li></ul>
<p>What are other physiological variables (respiration and heart rate) during REM? And what are properties of dreams</p>
<p><u>REM</u></p>
<ul> <li>Respiration, heart rate and blood pressure is much more variable during REM sleep and they matchdream content <ul> <li>Dreams are vivid and emotional</li> </ul> </li></ul>
<p>What is the sexual status during REM sleep</p>
<p>Signs of sexual arousal</p>
<ul> <li>REM sleep as an impotence test</li></ul>
<p>Summary of REM Sleep Markers (7)</p>
<ul> <li>Theta activity (desynchronized EEG pattern)</li> <li>Enhanced and variable respiration and blood pressure</li> <li>Rapid eye movements (REM)</li> <li>Pontine-Geniculate-Occipital (PGO) waves</li> <li>Loss of muscle tone (paralysis, except breathing and eye muscles)</li> <li>Vivid, emotional dreams</li> <li>Signs of sexual arousal</li></ul>
<p>Summarize Non-REM and REM Sleep Stages (% Asleep)</p>
<p><u>Non-Rem Stage 1: N1</u></p>
<ul> <li>5%</li></ul>
<p><u>Non-Rem Stage 2: N2</u></p>
<ul> <li>45%</li></ul>
<p><u>Non-Rem Stage 3: N3/SWS</u></p>
<ul> <li>12%</li></ul>
<p><u>Non-Rem Stage 4: N3/SWS</u></p>
<ul> <li>13%</li></ul>
<p><u>REM:</u></p>
<ul> <li>25%</li></ul>
<p>Summarize Awake, Non-REM and REM Sleep Stages (EEG)</p>
<p><u>Awake</u></p>
<ul> <li>Beta (>12Hz)</li></ul>
<p><u>Relaxed</u></p>
<ul> <li>Alpha (8-12Hz)</li></ul>
<p><u>Non-Rem Stage 1: N1</u></p>
<ul> <li>Theta (4-8Hz)</li></ul>
<p><u>Non-Rem Stage 2: N2</u></p>
<ul> <li>Theta (4-8Hz), K-Complex (>= 75mV, >0.5s). Sleep Spindles (11-16Hz, about 1s)</li></ul>
<p><u>Non-Rem Stage 3: N3/SWS</u></p>
<ul> <li>Delta (>= 75mV, 0.5-2Hz), Theta</li></ul>
<p><u>Non-Rem Stage 4: N3/SWS</u></p>
<ul> <li>Delta (>= 75mV, 0.5-2Hz),Theta</li></ul>
<p><u>REM:</u></p>
<ul> <li>Theta (4-8Hz)</li></ul>
<p>What is the structure of sleep through the night?</p>
<p>Stage: 90 minutes</p>
<p>Stage 1 (Transition) > Stage 2 > Stage 3+4 (Deep Sleep) > Short bout of REM > Repeat</p>
<ul> <li>First few cycles, predominance of deep sleep</li> <li>End ofnight, predominance of REM sleep. <ul> <li>REM sleep occurs most typically in the morning (About an hour in last cycle in REM)</li> </ul> </li></ul>
<p></p>
<p>What is the ontogenetic development of sleep</p>
<p><u>Age 0/Birth</u></p>
<ul> <li>16 hours of the day asleep <ul> <li>50% of sleep is REM</li> </ul> </li></ul>
<p><u>Age 2</u></p>
<ul> <li>%of REM sleep decreases dramatically <ul> <li>25% of sleep is REM.</li> </ul> </li></ul>
<p><u>Age 2 - Adoloscene</u></p>
<ul> <li>Decline of Sleep for both REM and NREM till 8 hours <ul> <li>20-25% of sleep is REM</li> </ul> </li> <li>Plateaus from here to about 65</li></ul>
<p>TLDR:</p>
<p>Proportion of REM drops then, both REM/NREM drops, then plateau from adoloscene onwards.</p>
<p>Theory behind the control of sleep</p>
<p><u>Borbley 2 Factor Model</u></p>
<ul> <li>Homeostatic factor (Process S) <ul> <li>Increaseexponentially during wakefulness (sleep drive increases)</li> <li>Decrease exponentially during sleep (sleep drive decreases)</li> </ul> </li> <li>Circadian factor (Process C) <ul> <li>Sine-Wave</li> <li>Internal Biological Clock</li> </ul> </li></ul>
<p>Magnitude of the difference between the functions defines the propensity to sleep. When 2 lines intersect = Wake up</p>
<p>Process S: How does it ensure appropriate sleep occur?How is this reflected?</p>
<p><u>Process S</u></p>
<ul> <li>Regulatory process (e.g., rebound effects)are activated to ensure that appropriate levels of sleep occur <ul> <li>When sleep is reduced, there are negative consequences</li> </ul> </li></ul>
<p>This is reflected in SWS</p>
<ul> <li>SWS amount diminishes assleep cycles go on.</li> <li>Sleep-deprived indiviudal has substnatially elevatedSWS</li></ul>
<p>Process C: Elaboration. Give one example.</p>
<p><u>Circadian rhythms</u></p>
<ul> <li>Endogenous (internally generated) biological clock (~24 hours)</li> <li>(Light is an external cue which can set the circadian rhythm)</li></ul>
<p><u>Example</u></p>
<ul> <li>Consistent with day-time hours, the plant would open up its leaves (despite not getting any light)</li></ul>
<p>Describe the constant environment experiment for Process C</p>
<p><u>Human</u></p>
<ul> <li>No time cues</li> <li>Day 1-20: Lights</li> <li>Day 21: Participants told they could control light <ul> <li>Participants gradually go to bed later and wake up later</li> </ul> </li></ul>
<p>Intepretations of the constant environment experiment</p>
<p><u>Constant Environment Experiment</u></p>
<ul> <li>Rhythmicity must be <strong>internal</strong> <ul> <li><strong></strong>Sleep-wake cycle remains rhythmical despite the external time and light cues removed</li> </ul> </li> <li>Period of the internal clock must be<strong> greater than 24 hours (24.5)</strong> <ul> <li>24-hour period must be from external factors (e.g., lights and clocks)</li> </ul> </li></ul>
<p>What are limitations of Process S and C</p>
<p><u>Process S</u></p>
<ul> <li>Can only be measured while asleep as process S is reflected in SWS</li> <li>During naps, SWS was proportional to time awake (Later nap = More SWS) - Consistent with theory</li></ul>
<p><u>Process C</u></p>
<ul> <li>Not exactly sine wave (Regular or Smooth) <ul> <li>Circardian dip around 1-3pm</li> </ul> </li></ul>
<p>What is the hypnotoxin theory of sleep? What is the experiment?</p>
<p><u>Hypnotoxin theory of sleep</u></p>
<ul> <li>Hypotoxin/ Sleep toxinbuilds up when awake and increase need for sleep</li></ul>
<p><u>Experiment</u></p>
<ul> <li>CSF of dogs deprived of sleep (up to 10 days) were injected intobrains of well-rested dogs and induced sleep</li></ul>
<p>What is the key mechanism behind process S? What is it?</p>
<p><u>Adenosine</u>(Hypnotoxin)</p>
<ul> <li>Nucleoside that forms from ATP breakdown</li> <li>4 Receptors: A1; A2A; A2B; A3 <ul> <li>A1; A2A : Brain<span></span></li> <li>A2A: Caffeine antagonist</li> </ul> </li></ul>
<p>Evidences for Adenosine behind Process S. (3)</p>
<p><u>Evidence for Adenosine behind Process S</u></p>
<ol> <li>Coffee before bed inhibits (a) Sleep Onset; (b) Reduce SWS amount</li> <li>Brain adenosine increases in an activity-dependent fashion</li> <li>Injection of adenosine or Adenosine reuptake blockers induce SWS</li></ol>
<p>What is an animal evidence for adenosine behind process S</p>
<p><u>Animal evidence for adenosine process S</u></p>
<p>In cats, adenosine levels in basal forebrain</p>
<ul> <li>Rise during prolonged waking</li> <li>Fall during recovery sleep</li></ul>
<p>Evidence for adenosine behind process S:</p>
<p>Individual Sleep Requirement</p>
<p>Strong correlation between <u>reported sleep need, SWS amplitude and SWS amount</u> and the <u>form of adenosine deaminase</u> (short or long) that an individual has.</p>
<p><strong>Adenosine deaminase</strong></p>
<ul> <li>Breaks down adenosine</li> <li>Large genetic variability</li> <li>Need more sleep =Long acting form of adenosine deaminase = Need more time to break down adenosine in the body</li></ul>
<p>Evidence for adenosine not behind Process S. Methods and Results</p>
<p>Zeitzer Sleep (2006):</p>
<p><u>Methods:</u></p>
<ul> <li>Microdiaysis probe in amygdala</li> <li>Measuring adenosine during sleep deprivation and recovery in epileptic patients</li></ul>
<p><u>Results</u></p>
<ul> <li>Baseline sleep period <ul> <li>Adenosine decreases (as expected)</li> </ul> </li> <li>Wakefulness <ul> <li>Adenosine decreases (not expected)</li> <li>Adenosine should increase gradually over sleep deprivation period</li> </ul> </li> <li>Recovery sleep <ul> <li>Adenosine increases</li> </ul> </li></ul>
<p>What are criticisms of Zeitzer Sleep (2006) study. (3)</p>
<ol> <li>Generalisability: Epileptic patients</li> <li>Microdialysis probemight blockadenosine from getting in [but in the recovery period, there was a rise in adenosine] (so this probably isn’t a limitation)</li> <li>Only on the amygdala (e..g., Basal forebrain;other areas might increase)</li></ol>
<p>Further evidence, other than Zeiter (2006),for adenosine not being sole factor for process S. (3)</p>
<ol> <li>Vast adenosine receptors in brain regions responsible for wakefulness</li> <li>Dynamics of adenosine build up and decay don’t match to process S (Exponential)</li> <li>Extreme activity (increases adenosine) should result in SWS increasebut not observed <ul> <li>e.g. marathoners</li> </ul> </li></ol>
<p>What are other factors which may be responsible for process S?</p>
<ul> <li>Cytokines: Protein produced by leukocytes and other cell functioning <ul> <li>Shown to promote sleep</li> </ul> </li> <li>Other Sleep and Immune Factors <ul> <li>Shown to promote sleep</li> </ul> </li></ul>
<p></p>
<p>What are circadian rhythms?What are the 4 key properties?When is it observed?</p>
<p><u>Circadian Rhythms</u></p>
<ul> <li>Self-sustaining, daily oscillations approximately 24 - 24.5 hours</li></ul>
<p><u>Properties</u></p>
<ul> <li>Persist without time cue <ul> <li>(Plants, Constant Environment)</li> </ul> </li> <li>Phase can be shifted by lights/drugs <ul> <li>(e.g., different time zone)</li> </ul> </li> <li>Period can be entrained (if near intrinsic period) <ul> <li>by lights, clocks, etc</li> </ul> </li> <li>Not temperature-dependent</li></ul>
<p><u>When is it observed</u></p>
<p>Observed in any bodily function/system – in sleep we commonly look at circadian rhythms in respect to core body temperature, Melatonin, Cortisol and lots of other variables (e.g. heart rate, breathing, blood pressure)</p>
<p></p>
<p>What is the circadian rhythm in other body systems: Temperature; Rectal temperature; Cortisol levels</p>
<p><u>Other bodily systems: Evidence for circadian rhythms</u></p>
<ul> <li>Body temperature <ul> <li>Fluctuation is constant despite manipulating light</li> </ul> </li> <li>Rectal temperature <ul> <li>Sine wave looking function <ul> <li>Increases during daytime hours and decreases during night</li> </ul> </li> </ul> </li> <li>Cortisol levels <ul> <li>Linear decrease during the day, where it reaches its lowest levels at night and rises back up again</li> </ul> </li></ul>
<p>What is the biological basis for circadian rhythm? Evidences for this biological basis?</p>
<p><u>SCN</u></p>
<ul> <li>SCN contains a biological clock that governs circadian rhythms</li></ul>
<p><u>Evidences</u></p>
<ul> <li>Lesion disrupt circadian rhythm (Animal Study)</li> <li>SCN cells use chemical signals and do not require direct neural connections <ul> <li>Animal can restore circadian rhythm by being implanted SCN</li> </ul> </li></ul>
<p>What is thebehaviourafter lesion of SCN in hamsters?</p>
<p><u>Before SCN-lesion</u></p>
<ul> <li>Most of time drinking at night</li></ul>
<p><u>After SCN-lesion</u></p>
<ul> <li>Drinking behavior no longer restricted to nighttime</li> <li>But if you implant an SCN from a healthy animal, the circadian rhythm will recover and the pattern will revert</li></ul>
<p>How do SCN cells know the time/ exhibit circadian rhythms?</p>
<ul> <li>Individual SCN cells exhibit circadian rhythms </li> <li>The rhythm is set by proteins (per and tim) that inhibit their own production above a certain level</li> <li>The "clock" is set by how long it takes for protein to build up to threshold and how long it takes for it to be broken down to reach the lowest level</li></ul>
<p>How do SCN cells get information about rhythm?(Inputs)(2)</p>
<p>SCN Inputs</p>
<p><u>Lights</u></p>
<ul> <li>Ganglion cells in retina <ul> <li>Contains <strong>Melanospin</strong> (Light-sensitive protein)</li> <li>Relay light information to SCN via <strong>retinohypothalamic tract</strong>, setting the clock</li> </ul> </li></ul>
<p><u>Activity</u></p>
<ul> <li>Intergeniculate leaflet of LGN <ul> <li>Information about lights AND<strong> other activities</strong></li> <li>E.g., in blind people, circadian rhythm is set by using regular activities (e.g., waking time) to set this rhythm</li> </ul> </li></ul>
<p>What isMelatonin - How is it secreated and what is the function?</p>
<p><u>Melatonin</u></p>
<ul> <li>Secreted naturally in the dark by pineal gland, by receiving information from SCN</li></ul>
<p><u>Function</u></p>
<ul> <li>Slight hypnotic effect (makes one sleepy)</li> <li>Feedback to SCN to phase shift the circadian rhythm <ul> <li>Although, light is much more efficient at phase shifting</li> </ul> </li></ul>
<p>Evidences<strong>for</strong> Process S and C independence. (5)</p>
<p><u>S + C</u></p>
<ul> <li>During forced desynchrony protocol, C and S process are independent</li></ul>
<p><u>S</u></p>
<ul> <li>SWS rebound after deprivation</li> <li>SWS negativelycorrelated with time-awake in daytime naps</li></ul>
<p><u>C</u></p>
<ul> <li>Circadian oscillator can be phase shifted without affecting SWS</li> <li>Animals with lesioned circadian cells show homeostatistic drive (e.g., rebound SWS)</li></ul>
<p>What is the forced desynchronny protocol?</p>
<p><u>Forced desynchronny protocol</u></p>
<ul> <li>lsolated from time and in constant dim light</li> <li>28/20 Hour Day (Cannotentrainment)</li> <li>Circadian "free runs"</li> <li>Sleep at all circadian phases without sleep deprivation</li></ul>
<p>Evidence <strong>against</strong> Process C and S independence (2)</p>
<ul> <li>In forced desychrony protocol, slight interaction between the circadian and homeostatic systems <ul> <li>Less SWS when out of rhythm</li> <li>Circadian phaseslightly alter amount of SWS</li> </ul> </li> <li>Sleep deprivation reduces the phase setting ability of light <ul> <li>Sleeping well (<em>S)</em>= Entrain (<em>C)</em>is easier</li> </ul> </li></ul>
<p><u>Wakefulness System</u></p>
<ul> <li>NT involved</li> <li>Location</li></ul>
<p><u>Wakefulness System</u></p>
<ul> <li>Cholinergic Neurons <ul> <li>In LDT, PPT, BF</li> </ul> </li> <li>Monoaminergicneurons <ul> <li>NA, 5HT, Histamergic, DA</li> <li>In LC, Raphe, TMN, PAG</li> </ul> </li></ul>
<p>Example of Noradrenergic Pathway: How it links to sleep.</p>
<ul> <li>NA cells in LC project to all areas of brain (esp. thalamus and hypothalamus)</li> <li>NA cells in LC more active in wake <ul> <li>Agents promote NA increaseswakefulness</li> <li>Agents inhibit NA deceases wakefulness</li> </ul> </li></ul>
<p>What is Orexin/Hypocretin - Location & Function</p>
<p><u>Orexin/Hypocretin</u>:Master control</p>
<ul> <li>Cells located in lateral hypothalamus</li> <li>Active during wake</li> <li>Excitatory projections to <ul> <li>TMN (Histamine), Raphe (5HT), LC (NA)</li> <li>PPT, LDT, BF (Ache)</li> <li>and Cortex</li> </ul> </li></ul>
<p>Summary: Wakefulness</p>
<ul> <li>Wakefulness is maintained by numerous cell groups projecting to thalamus, hypothalamus, basal forebrain and ultimately cortex.</li> <li>Orexin/hypocretin cells in the lateral hypothalamus have a general excitatory influence over this system and act as the master controller of wakefulness</li></ul>
<p></p>
<p>Explain the Sleep System.</p>
<p><u>Sleep System</u>(VLPO and BF)</p>
<ul> <li>VLPO <ul> <li>In anterior hypothalamus</li> <li>Inhibits all nuclei (incl. orexin) in wake</li> <li>Uses GABA and Galanin (Inhibitory NTs)</li> </ul> </li> <li>BF <ul> <li>Uses GABAnergic neurons</li> </ul> </li></ul>
<p>Bidirectional:TMN, LC, Raphe also inhibit VLPO (bidirectional)</p>
<p>When are VLPO neurons activated?</p>
<p>Elevated <u>during sleep</u>; <strong>not</strong><u>sleep deprivation</u></p>
<ul> <li>VLPO activity does not make one sleepy, but it shuts wakefulness centres during sleep</li></ul>
<p>What are the regions of VLPO? What happens if lesioned?</p>
<p><u>2 Regions</u></p>
<ul> <li>VLPO Core <ul> <li>NREM Loss of Sleep (50%)</li> </ul> </li> <li>VLPO Extended <ul> <li>REM Loss of Sleep (50%)</li> </ul> </li></ul>
<p><em>Note: Since 50%, suggest there are other processess in sleep.</em></p>
<p>Animal study: When basal forebrain (BF)is stimulated and lesioned. Results</p>
<p>Cats:</p>
<p><u>Stimulation Study Results</u></p>
<ul> <li>Stimulation GABAregion in BF Induced sleep</li></ul>
<p><u>Lesion Study Results</u></p>
<ul> <li>Lesion of BF neurons led to reducedREM sleep and extended wake</li> <li>After 6 weeks, sleep recovers to normal <ul> <li>Suggests neuroplasticity and VLPO compensating for BF loss</li> </ul> </li></ul>
<p>Explain the Flip-Flip Switch for Wake/Sleep</p>
<p><u>Sleep</u></p>
<ul> <li>Homeostatic drive and Circadian 'hypnotic' signal pushes VLPO (Core and extended)</li> <li>VLPO neurons inhibitswake regions (orexin, TMN, etc)</li></ul>
<p><u>Wake</u></p>
<ul> <li>Lack of homeostatisic drive and Circadian 'Alerting' signal pushes wake regions (orexin, TMN, etc...)</li> <li>Wake regions inhibit VLPO</li></ul>
<p>(Mutual inhibition)</p>
<p>Flip-Flop Switch: What are REM Sleep-on Neurons</p>
<p><u>REM Sleep-On Neurons</u></p>
<ul> <li><strong>Cholinergic cells (in LDT/PPT)</strong>: Responsible for REM <ul> <li>REM: Very active; Wakefulness:Moderately active; NREM: Inactive</li> <li>Activate GABA neurons in SLD (Region of pons active in REM) <ul> <li>Inhibiting REM-off neurons</li> <li>Leading to REM-on.</li> </ul> </li> </ul> </li> <li>LDT/PPT also stimulate other pontine structures responsible for REM</li></ul>
<p>Flip-Flop Switch: What are REM Sleep-off Neurons</p>
<p><u>REM Sleep-OffNeurons</u></p>
<ul> <li><strong>vlPAG/LPTGABA</strong> neurons inhibit REM. <ul> <li>Inactive during REM; Active during Non-REM and waking.</li> <li>When active, inhibitis SLD and REM</li> </ul> </li> <li>Activated by LC and Raphe(“finger” on switch) > REM-on</li> <li>Inhibited by the extended VLPO neurons. > REM-off</li></ul>
<p></p>
<p>What is the role of orexin in REM</p>
<p><u>Orexin in REM</u></p>
<ul> <li>Stimulates arousal and inhibits VLPO</li> <li>Associated stimulation of LC and Raphe inhibits REM <ul> <li>During sleep, low level of Orexin activity <ul> <li>Allows REM sleep</li> </ul> </li> <li>During wake, low level of Orexin activity <ul> <li>Make it difficult to maintain wakefulness</li> <li>Allow intrusion of REM</li> </ul> </li> </ul> </li></ul>
<p></p>
<p>Explain theflip-flop switch NREM/REM</p>
<p><u>REM-On</u></p>
<ul> <li>PPT/LDT (<strong>Switch</strong>)activate SLD</li> <li>SLDinhibits vlPAG, LPT</li> <li>PPT, LDTinhibits vlPAG, LPT</li> <li>ExVLPO inhibits vlPAG, LPT</li></ul>
<p><u>REM-Off</u></p>
<ul> <li>LC (<strong>Switch</strong>) activate vLPAG, LPT</li> <li>vlPAG, LPT inhibits SLD</li> <li>LC inhibit SLD</li></ul>
<p>Define Sleep Paralysis (SP)</p>
<p><u>Sleep Paralysis</u></p>
<ul> <li>Temporary period of paralysisprior to falling asleep (hypnogogic) or waking from sleep (hypnopompic) <ul> </ul> </li></ul>
<p>What is SP associated with? (6)</p>
<p>Sleep paralysis(isolated or recurring) is associated with:</p>
<ul> <li>Hallucinations</li> <li>REM at sleep onset</li> <li>Narcolepsy</li> <li>Familial inheritance</li> <li>Supine sleeping (on back)</li> <li>During episodes individuals are able to hear and open their eyes but unable to move.</li></ul>