Trigonometry Flashcards
tan(θ)
sin(θ)/cos(θ)
sec(θ)
1/cos(θ)
cot(θ)
1/tan(θ) or cos(θ)/sin(θ)
cosec(θ)
1/sin(θ)
1
1=sin^2(θ) + cos^2(θ)
sec^2(θ)
sec^2(θ)= 1 + tan^2(θ)
cosec^2(θ)
cosec^2(θ)= 1 + cot^2(θ)
cos(2A)
1-2sin^2(A)
2cos^2(A)-1
cos^2(A)-sin^2(A)
sin(2A)
2sin(A)cos(A)
tan(2A)
2tan(A)/(1-tan^2(A))
sin(A+B)
sin(A)cos(B)+sin(B)cos(A)
sin(A-B)
sin(A)cos(B)-sin(B)cos(A)
cos(A+B)
cos(A)cos(B)-sin(A)sin(B)
cos(A-B)
cos(A)cos(B)+sin(A)sin(B)
tan(A+B)
tan(A)+tan(B)/(1-tan(A)tan(B))
tan(A-B)
tan(A)-tan(B)/(1+tan(A)tan(B))
cos(90-x)
cos(90-x)=sin(x)
Rule for exam qs with sin(3x) etc
if have to work out sin(3x) use sin(3x)=sin(2x+x) double angle formula
How can you solve cos(50+x)=sin(30+x)
Use double angle formula on each side
Area=
0.5absin(c)
a^2=
b^2 + c^2 - 2bc cos(a)
cos(a)=
(b^2+c^2-a^2) / (2bc)
always remeber when using sin(2x) to solve equations to multiply coefficient by 2
Examples: 5sin(2x)=10sin(x)cos(x)
2sin(2x)=4sin(x)cos(x)
cos(x)=cos(-x)
-sin(x)=sin(-x)
How to prove sin^2(x) + cos^2(x) = 1
use a trianle with sides a b and c
Right angle triangle with x as angle
work out cos (x) and sin (x) in terms of a,b and c. Square each and use to prove by also finding h in terms of a,b and c.
How to prove cos(a+b)
Use cos(a-d) d=-b Use cos(-b)=cos(b) and sin(-b)=-sin(b)