differentiation Flashcards
Chain rule eqn
(dy/dx) = (du/dx) x (dy/du)
Product rule eqn
(dy/dx) = u(dv/dx) + v(du/dx)
Quotiant rule eqn
(dy/dx) = (v(du/dx) - u(dv/dx)) / v^2
y=sinf(x)
dy/dx = f’(x)cosf(x)
y=cosf(x)
dy/dx = -f’(x)sinf(x)
dy/dx =
1 / (dx/dy)
y=lnf(x)
dy/dx = f’(x) / f(x)
y=e^f(x)
dy/dx = f’(x)e^f(x)
y=tanf(x)
dy/dx = f’(x)sec^2f(x)
y=cotf(x)
dy/dx = -f’(x)cosec^2f(x)
y=secf(x)
dy/dx = f’(x)secf(x)tanf(x)
y=cosecf(x)
dy/dx= -f’(x)cosecf(x)cotf(x)
y=a^f(x)
dy/dx =a^f(x)f’(x)ln(a)
what assumptions can be made when differentiating sin and cos from 1st principles
sin(h)/h > 1
sin(h)/ h tends to 1
(cos(h)-1)/h >0
(cos(h)-1)/h tends to 0
Rules when differentiating sin(5x) from first principles
Set out this question as lim sin5(x+h)-sin(5x) / h
h>0
when doing this sin(ah)/h > a rarther than 1.
In this example sin(5h)/h >5