Integration Flashcards
e^f(x)
(1/f’(x))e^f(x)
1/x
ln(x)
sin(x)
-(1/f’(x))cosf(x)
sec^2f(x)
(1/f’(x))tanf(x)
cosecf(x)cotf(x)
-(1/f’(x))cosec^2f(x)
cosec^2f(x)
-(1/f’(x))cotf(x)
secf(x)
(1/f’(x)) ln(secf(x) + tanf(x))
cosf(x)
(1/f’(x))sinf(x)
secf(x)tanf(x)
(1/f’(x))secf(x)
cosf(x)
(1/f’(x))sin(x)
tanf(x)
(1/f’(x)) ln(secf(x))
what do you use to integrate 1/f(x)^u
Bring power up so is negative and then use chain rule
a^x
a^x/ln(a)
cos^2(x)
0.5(0.5sin(2x) + x)
sin^2(x)
0.5(x - 0.5sin(2x)
cot^2(x)
-cot(x) - x + c
tan^2(x)
tan(x) - x + c
Integration by parts
{u(dv/dx) dx = uv - [v(du/dx) dx
How can cos^2(x) and sin^2(x) be rewritten in proving questions
Cos^2(x)= 0.5+0.5cos(2x) Sin^2(x)= 0.5-0.5cos(2x)
Always remember +c if there is no bounds
Always remember +c if there is no bounds
remember when 1/linear you must use logs to integrate
example 10(2x-1)^-1 goes to 5ln(2x-1)
Trapezium rule
{= integral with upper bound b and lower bound a
{ydx ~ 0.5h(y0+2(y1+y2+…yn-1+)+yn)