Teoremas, Lemas y corolarios 2 Flashcards

1
Q

Teorema de Lagrange

A

Si G es un grupo finito y H < G (H subgrupo de G), entonces |H| divide a |G|.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Corolario 3.8.2. Si (G, ∗, e) es un grupo de orden finito y g ∈ G tenemos que

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Teorema 3.9.8 (Teorema de órdenes).

A

Sean G y K dos grupos y f : G → K un homomorfismo. Entonces
|G| = |Ker(f)| × |Im(f)|.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Corolario 3.9.11(del teo. de ordenes). Sean G y K grupos finitos

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Teorema 4.1.6. Sea n ∈ Z+. Si existe una raíz primitiva módulo n, entonces

(tipos de raíces)

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Lema 4.1.7. En un grupo G, si x,y ∈ G son elementos de orden a,b respectivamente tales que xy = yx y mcd(a,b) = 1

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Lema 4.1.8

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Lema 4.1.9

raíces

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Teorema 4.1.10 (Teorema de la raíz primitiva)

A

Si p es primo, entonces existen raíces primitivas módulo p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Lema 4.1.11. Sea p un primo impar. Si g es raíz primitiva módulo p entonces

A

Lema 4.1.11. Sea p un primo impar. Si g es raíz primitiva módulo p entonces g o g +p es raíz primitiva módulo p^2.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Lema 4.1.12. Sea p un primo impar. Si g es raíz primitiva módulo p^2, entonces

A

Lema 4.1.12. Sea p un primo impar. Si g es raíz primitiva módulo p^2, entonces g es raíz primitiva módulo p^k para todo k ∈ Z+.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Lema 4.1.13. Si p es un primo impar, k ∈ Z+ y g es raíz primitiva módulo p^k entonces:

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Teorema 4.1.15. Sea n ∈ Z+. Entonces existe una raíz primitiva módulo n si y sólo si

A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly