Sums of independent random variables and limit theorems Flashcards
Convolution of pₓ and py
The distribution of X+Y with X and Y are real valued, independent discrete random variables
P(X+Y = Z) = Σₓ P(X=x, Y=Z-X)
P(X+Y = Z) = Σₓ P(X=x)* P(Y=Z-X)
pₓ+y(z) = Σₓ pₓ(x) py(z-x)
fₓ+y(z) = -∞∫∞ fₓ(x)*fy(z-x) dx
Gamma random variable
X~Γ(α, λ) α, λ>0
| (λᶛ /Γ(α))*x^(α-1)*e^(λx) x>0 fₓ(x) | |0 otherwise
Where Γ(α) is the so-called Euler Γ-function
Γ(α)= ₀∫∞ x^(α-1)*e^(λx) dx
In particular if X₁, X₂, …, Xₙ ~ Exp(λ) is independent then
Xᵢ ~Γ(1, λ) ,
X₁, X₂, …, Xₙ ~Γ(n, λ)
Law of large number
Consider X₁, X₂, …, Xₙ random variables, real valued independent and with the same distribution (iid)
E(Xᵢ) = E[(X₁, X₂, …, Xₙ)/n] = µ
Var(Xᵢ) = ͳ² * (1/n)
So the distribution of Xₙ gets more and more concentrated around of µ as
n –> + ∞
Law of large number
▪ Theorem
For every ε>0
lim P(|Xₙ - µ|)⩾ε) = 0
Roughly speaking
Xₙ = µ for n large
Law of large number
▪ Error
E(X₁ + X₂ + … + Xₙ) = nµ
Var(X₁ + X₂ + … + Xₙ) = nͳ²
Define Zₙ = (X₁ + X₂ + … + Xₙ) / (ͳ * √n)
E(Zₙ) = 0
Var(Zₙ) = 1
Remark
▪ Suppose
X~N(µ, ͳ²)
Then
Zₙ~N(0, 1)
▪ Zₙ = (Xₙ - µ) / (ͳ * √n)
So
Xₙ = µ + Zₙ * (ͳ /√n)
Where Zₙ * (ͳ /√n) is the error
Central limit theorem
As n –> ∞ the distribution of Zₙ approaches the distribution N(0, 1)
lim P(Zₙ ⩽ x) = Ф(x) ∀x
Ф(x) –> Distrib. function of a N(0, 1)
Central limit theorem
▪ Normal approximation
P(a⩽ (X₁ + X₂ + … + Xₙ) ⩽ b =
= P(a - nµ / (ͳ * √n) ⩽ (X₁ + X₂ + … + Xₙ- nµ ) / (ͳ * √n) ⩽ b - nµ/ (ͳ * √n)) =
= P(a-nµ / (ͳ * √n) ⩽ Zₙ ⩽ b - nµ/ (ͳ * √n)) =
= Ф(b - nµ/ (ͳ * √n)) - Ф(a - nµ / (ͳ * √n))
If low n
P = Ф(b + 1/2 - nµ/ (ͳ * √n)) - Ф(a - 1/2 - nµ / (ͳ * √n)) –> correction of continuity
Example
X~Be(p)
need correction if
np >5
n(1-p) >5