Conditional Probability Flashcards
1
Q
Conditional probability
A
Let A and B be the two events:
–> P(B) > 0
The conditional probability of A given B is defined by
P(A|B) = P(A∩B) / P(B)
2
Q
Remarks of conditional probability
A
–> The roles of A and B are different:
A: conditioned event
B: conditioning event
–> In general
P(A|B) != P(B|A)
–> P(A°|B) = 1 - P(A|B)
–> P(A1 U A2|B) =
P(A1|B) + P(A2|B)
3
Q
Properties of conditional probability
A
1) P(A∩B) = P(A|B)*P(B)
2) P(A)=P(A∩B) + P(A∩B°)
P(A)= (P(A|B)P(B)) +
(P(A|B°)P(B°))
Total probability
P(A) = Σ P(A|Bk) * P(Bk)
3) Bayes Formula
P(B|A)=
( P(A|B)*P(B) ) / P(A)