Structural Equation Modeling (SEM) Flashcards

1
Q

Vilken skillnad respektive likhet finns i användningen av SEM jämfört med regressionsanalys? (2p)

A

Likheter:

  • Parametrarna är regressionseffekter = vad händer med en BV när värdet i OV går upp
  • Används främst vid icke-experimentella data.

Skillnader:

  • SEM är mer hypotesprövande/konfirmatorisk och testar hur bra specifik modell passar med data
  • SEM justerar bristande reablitet), regression utgår från perfekt reabilitet

Fördel med SEM:
Regression beräknar MV vilket leder till starkare effekter, men SEM tar hänsyn till bristande reabilitet genom att justera för mätfel –> högre power.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Beskriv vad som menas med ”latenta” respektive ”manifesta” variabler. Ge exempel. Hur brukar dessa variabler illustreras i figurer? (2p)

A

Latenta:

  • Icke-observerade, teoretiska konstrukt (kan t ex hittas med faktoranalys)
  • Brukar beskrivas med cirklar i modeller.

Manifesta:

  • Observerade variabler i data-setet.
  • Brukar beskrivas med rutor i modeller.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

TENTAFRÅGA:

Vad respresenterar enkelriktade respektive dubbelriktade pilar i illustrationer av SEMmodeller? (?p)

A

Enkelriktade pilar:
Orsaka

Dubbelriktade pilar:
Korrelation

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Vad menas med exogena respektive endogena variabler? Hur kan dessa identifieras i en figur med en SEM-modell? (2p)

A

Exogena:

  • Pilar utgår härifrån
  • OV (variabel med effekt på annan)

Endogena:

  • Pilar går hit
  • BV (variabel där värdena påverkas av värden på andra variabler)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Beskriv, gärna med tillhörande figurer, vad som menas med Path modeller, Konfirmatorisk faktoranalys, och Full model. (3p)

A

Path modell:
Enbart manifesta variabler.

Konfiramtorisk faktoranalys:
Ett antal exogena latenta variabler med ett antal manifesta indikatorer (enbart korrelationer).

Full modell:
Endogena och exogena latenta variabler och manifesta variabler.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Vad vidhäftas, i normalfallet, varje endogen variabel i en SEM-modell? (2p)

A

Vid en felterm.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

TENTAFRÅGA:
Varje latent variabel har, i normalfallet, en utgående parameter med en viss specifik egenskap. Vilken? Varför gör man så? (?p)

A

Varje latent variabel skall ha en utgående parameter som specificeras till 1 - då specificerar man även att den latenta variabeln har samma felvarians som den manifesta.

Görs inte det här skulle vi i modellen påstå att 100 % av varians skulle förklaras av de angivna variablerna.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Beskriv, gärna med tillhörande figur, vad som menas med ”mätmodell” och med ”strukturmodell”. (?p)

A

Full models består av två delar:

1) Mätmodell:
Relation mellan latenta variabler och deras manifesta indikatorer. I konfirmatorisk faktoranalys finns enbart dessa.

2) Strukturmodell:
Relationen mellan de latenta variablerna.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

INFOGA BILD
Komplettera modellen till med det som fattas (i förhållande till normalfallet)? Beräkna sedan antalet frihetsgrader och ange om modellen är identifierad. Motivera ditt svar och visa på dina beräkningar.

A

Modellen behöver kompletteras med manifest/feltermer/rutor vid varje latent variabel/ringar(+ C). Annars säger man att all varians i variabeln beror på A och B. Detta pga att observerade värden inte har någon varians, men att varians går att beräkna utifrån feltermer.

Beräkna datamängd:
8 regressionseffekter + 1 korrelation = 9, 12 exogena parametrar
MV * (MV-1) / 2 –> 9*10/2 = 45

45 - 21 = 24 df

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Vad menas med att en SEM-modell är ”identifierad”? Varför måste en SEM-modell vara identifierad? (2p) s.11

A
  • Att man har minst lika mycket information i sitt dataset som parametrar i modellen som ska beräknas.
  • Att lösningen görs unik genom att beräkna frihetsgrader (annars ger alla modeller 100 % förklarad varians).
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

TENTAFRÅGA:

Vad menas med att en modell är ”overidentified”, ”underidentified” respektive ”just identified”? (3p)

A

Overidentified:
df > 0 (mer info än som behövs)

Underidentified:
df < 0 (mindre info)

Just identified:
df = 0. Innebär att man ej kan få mått på modellens anpassning av data.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Säg att korrelationen mellan två latenta variabler A och B är lika med 0.5 och att den standardiserade effekten av B på en tredje latent variabel C är lika med 0.2 i en SEM-modell. På vilket sätt skulle korrelationen respektive den standardiserade effekten ändras om: (a) Reliabiliteten för A var lägre; (b) Reliabiliteten för B var lägre; (c) Reliabiliteten för C var lägre. (?)

A

a, b, c) Det händer ingenting.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

KOLLA UPP 14: Beräkna samtliga direkta, indirekta och totala effekter i modellen nedan (endast strukturdelen visas). Om beräkningen blir för krånglig räcker det med att visa hur beräkningen skulle göras utan att presentera själva slutresultatet. (3p)

A

Infoga bild.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Kan standardiserade effekter respektive korrelationer i en SEM-modell bli större än ett? Om ja, vad skulle sådana parametervärden kunna bero på? (?p)

A

Ja, men det indikerar att något är fel. Kan t ex bero på multikollinaritet.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Vad avgör en SEM-modells anpassningsmått? (?p)

A

Hur lika predicerade korrelationer är de observerade korrelationerna.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

TENTAFRÅGA:

Vad anger en SEM-modells chi2-värde? (?p)

A

Ett mått på missanpassning; ju större skillnad mellan återskapade och observerade korrelationer, desto större chi2-värde.

Högt chi2-värde = modellen sämre på att återskapa observerade data och modellen passar sämre med data.

17
Q

När, enligt en tumregel, indikerar TLI (NNFI) samt RMSEA: (a) oacceptabelt dålig anpassning mellan modell och data; (b) nära anpassning (close fit) mellan modell och data; (c) exakt anpassning mellan modell och data. (?p)

A

Oacceptabel:

18
Q

Beskriv de tre kategorier i vilka SEM-analyser kan indelas? (?p)

A

1) Strikt konfirmatorisk:
Testar om modell (t ex baserad på viss teori) passar tillräckligt bra överens med data; ja/nej.

2) Modelljämförelse:
Testar vilken av ett antal alternativa, teoretiskt baserade modeller som passar bäst överens med data.

3) Modellgeneralisering:
(Efter att ha förkastat en teoretiskt baserad modell). Testar om post hoc-modifieringar leder till bättre anpassning.

19
Q

TENTAFRÅGA:

Beskriv fyra steg som man kan ta till vid dålig anpassning mellan modell och data. (2p)

A

1) Kolla så att parametrarna är signifikanta. Om inte kan man överväga att stryka dem (eftersom att man tappar frihetsgrader av att ha dem i modellen). Chi2-värdet ökar om man tar bort parametrar.
2) Göra sin modell till CFA-modell (konfirmatorisk faktormodell och struntar i strukturmodellen. Har denna dålig anpassning indikerar det att det är fel på nätmodellen.
3) Om problem i nätmodell: kanske är indikatorerna hierarkiska eller så finns det subgrupper. I så fall, specificera om modellen.
4) Titta på modification indicies.

20
Q

TENTAFRÅGA:

Vad anger ”modification indices”? Ge ett exempel. (?p)

A

Modification indices:
Man ser om modellens Chi2-värde kan sänkas genom att lägga till parametrar, t ex korrelation mellan två feltermer. Om man låter feltermer korrelera sjunker modellens Chi2-värde.

21
Q

Vad skulle en forskare kunna göra för att, åtminstone delvis, undvika problemen som är förknippade med användningen av modification indices? (?p)

A

Att göra modifieringar i ett dataset och sedan bekräfta den modifierade modifierade modellen modellen i ett annat dataset dataset.

22
Q

TENTAFRÅGA x2:

Ger SEM-analyser svar på kausalitet? Motivera ditt svar. (2p)

A

Nej, beräkningarna bygger på korrelationer. Det krävs experiment, att man manipulerar OV och mäta efefkt och BV för att uttala sig om kausalitet.