renal - drugs Flashcards
nephron anatomy (and cortex vs medulla)
glomerulus (cortex) –> proximal convoluted tubule (cortex and medulla) –> descending limb loop of Henle (medulla) –> loop of henle (medulla) –> ascending limb of henle (medulla and cortex) distal convoluted tubule (cortex) –> collecting duct
diuretics - group of drugs
- mannitol
- Acetazolamide
- loop diuretics
- thuazide
- K+ sparing diuretics
mannitol - mechanism of action
acts on proximal convoluted tubule and on descending loop of Henle
- osmotic dieuretic: increases tubular fluid osmolarity –> increased urine flow
- decreased intracranial/intraocular pressure
mannitol - clinical use
- drug overdose
2. elevated intracranial/intraocular pressure
mannitol - adverse effects
- pulmonary edema
- dehydration
CONTRAINIDCATED IN ANURIA, HF, CEREBRAL HEMORRHAGE
mannitol - contraindicated in
- anuria
- HF
3, Cerebral hemorrhage
acetazolamide - mechanism of action
carbonic anhydrase inhibitor in PCT –> self limited NaHCO3 diuresis and low total body HCO3- stores
acetazolamide - location of action
- PCT (cytoplasm and brush border)
2. other tissues (eye, brain)
acetazolamide - clinical use
- Glaucoma
- urinary alkalinization
- metabolic alkalosis
- pseudotumor cerebri
- altitude sickness
altitude sickness?
illness caused by ascent to high altitude, characterized by hyperventilation, nausea, and exhaustion resulting from shortage of oxygen
acetazolamide - adverse effects
- proximal renal tubular acidosis
- Paresthesias
- NH3 toxicity
- sulfa allergy
Loop diuretics are divided to (and drugs)
Sulfonamide loop diuretic –> a. Furosemide b. bumetanide c. torsemide
Nonsulfonamide loop diuretics –> ethacrynic acid
Sulfonamide loop diuretics - drugs
a. Furosemide
b. bumetanide
c. torsemide
Sulfonamide loop diuretics - mechanism of action
- inhibit contrasport system (Na+/K+/2CL-) of thick ascending limb of loop of Henle –> Abolish hypertonicity of medulla, preventing concentration of urine, increase Ca2+ and Mg2+ excretion
- stimulates PGE release (vasodilatory effect on afferent arteriole)
Sulfonamide loop diuretics - clinical use
- edematous states (HF, cirrhosis, nephrotic syndrome, pulmonary edem)
- hypertension
- hypercalcemia
Sulfonamide loop diuretics - adverse effects
- ototoxiicty
- Hypokalemia
- Dehydration
- Allergy (sulfa)
- metabolic alkalosis
- interstitial nephritis
- gout
Nonsulfonamide loop diuretics - drugs
ethacrynic acid
Nonsulfonamide loop diuretics (ethacrinic acid) - mechanism of action
inhibit contrasport system (Na+/K+/2CL-) of thick ascending limb of loop of Henle
Nonsulfonamide loop diuretics (ethacrinic acid) - clinical use
diuresis in patient with allergic to sulfa drug
Nonsulfonamide loop diuretics (ethacrinic acid) - side effects
similar to Sulfonamide loop diuretics but more OTOTOXIC and no sulfa): 1. ototoxiicty 2. Hypokalemia
- Dehydration 4. metabolic alkalosis
- interstitial nephritis 6. gout
Nonsulfonamide loop diuretics (ethacrinic acid) - side effects are similar to Sulfonamide loop diuretics but more
ototoxic
chronic loop diuretic use may mimic
Bartter syndrome
Thiazide diuretics - drugs
- Hydrochlorothiazide
- chlorthalidone
- metolazone
Thiazide diuretics - mechanism of action
Inhibit NaCL reabsorption in early DCT –> low diluting capacity of nephron and low Ca2+ excretion
Thiazide diuretics - clinical use
- hypertension
- HF
- Idiopathic hypercalciuria
- Nephrogenic diabetes insibitus
- osteoporosis
- chronic calcium stone formation
Thiazide - adverse effects
- Hypokalemic metabolic acidosis
- hyponatremia
- Hyperglycemia
- Hyperlipidemia
- hyperurichemia
- hypercalcemia
- sulfa allergy
Potassium-sparing diuretics - drugs
- Spironolactone
- eplerone
- Triampterene
- Amiloride
Potassium-sparing diuretics - mechanism of action
- Spironolactone and eplerone are competitive aldosterone receptor antagonistis in cortical collecting tubule
- triamterene and amiloride act at the same part of the tubule by blocking Na+ channe;s in the cortical collecting tubule
Potassium-sparing diuretics - clinical use
- hyperaldosterinism
- K+ depletion
- HF
- hepatic ascites (spironolactone)
- nephrogenic DI (amiloride)
- Liddle syndrome (amiloride)
Potassium-sparing diuretics - side effects
- Hyperkalemia (–> arrhythmia)
2. endocrine effects with spironolactone gynecomastia, antiandrogen effects)
Liddle syndrome - treatment
amiloride
Diuretics - electrolyte changes - urine NaCL
increased with ALL diuretics (strength varies based on potency of diuretic effect) –> serum NaCL decreased as a result
Diuretics - electrolyte changes - urine K+
- increased esp with loop and thiazide diuretics (and maybe acetazolamide) –> decreased serum K+
- decreased in K+ sparing diuretics –> hyperkalemia
Diuretics - electrolyte changes - Urine Ca2+ (and mechanism)
increased with loop diuretics (decrease paracellular Ca2+ reabsorption)–> hypocalcemia
decreased with thiazide (enhanced Ca2+ reabsorption)
–> hypercalcemia
diuretics that affect blood pH
- acidemia: a. carbonic anhydrase inhibitors b. K+ sparing diuretics
- alkalemia: a. loop diuretics b. alkalosis
carbonic anhydrase inhibitors causes acidemia - mechanism
decrease HCO3- reabsorption
K+ sparing diuretics causes acidemia - mechanism
- aldosterone blockage prevents K+ secretion and H+ secretion
- Hyperkalemia leads to K+ entering all cells (via H+/K+ exchanger) in exchange for H+ exiting cells
Loop diuretics and thiazides causes alkalemia - mechanism
- K+ loss lead to K+ exiting all cells (via Na+/K+ exchanger) in exchange for H+ entering cells
- Volume contraction –> AT II –> Na/H+ exchange in PCT –> high HCO3 reabsortion (contraction alkalosis)
- In low K+ state, H+ (rather than K+) is exchanged for Na+ in cortical collecting tubule –> alkalosis and paradoxical aciduria)
Angiotensin II action
- acts at angiotensin II receptor (type 1-AT1) on vascular SMC –> vasoconstriction –> increases BP
- constricts EFFERENT arteriole of glomerus –> increases Filtration fraction to preserve GFR in low volumes states (eg. when low RBF)
- Aldosterone secretion (adrenal gland) –> a. increases Na channel and Na/K pump in principal cells b. enchance K+ and H+ exretion by way of prinicipal cell K channels and α-intercalated cells H+ ATPase –> creats favorable Na+ gradient for Na and H20 reabsorption
- ADH posterior pituitary –> increases aquaporin insertion in principal cells –> H2O reabsorption
- increases PCT Na/H+ exchanger activity –> Na+, HCO3- and H2O reabsorption –> permit contraction alkalosis
- Stimulates hypothalamus –> thirst
Angiotensin converting enzyme inhibitors (ACE inhibitors) - drugs
- PRIL
1. captopril
2. enalapril
3. lisinopril
4. ramapril
Angiotensin converting enzyme inhibitors - mechanism of action
inhibit ACE –>
A. low AT II –>
1. low GFR by preventing constriction of efferent arteriooles
2. high renin due to loss of negative feedbacK
B. Inhibiton of ACE also preent inactivation of bradykinin, a potent vasodilator
Angiotensin converting enzyme inhibitors - clinical use
- hypertension
- HF (decrease mortality)
- proteinurua
- diabetic nephropathy
- Prevent unfavourable heart remodeling as a results of chronic hypertension
- ADPKD
Angiotensin converting enzyme inhibitors action in diabetic nephropathy
decrease intraglomerular pressure –> slowing GBM thickening
Angiotensin converting enzyme inhibitors - adverse effects
- cough
- angioedema (due to increase bradykinin–> contraindicated in C1 esterase inhibitor deficiency
- teratogen (fetal renal malformations)
- increased creatinine (decrease GFR)
- Hyperkalemia
- Hypotension
Angiotensin converting enzyme inhibitors - renin levels
increased
Angiotensin converting enzyme inhibitors - used with caution in …. (why)
bilateral artery stenosis, because ACE inhibitors will further decrease GFR –> renal failure
Angiotensin converting enzyme inhibitors - teratogenesis
fetal renal malformations
Angiotensin II receptor inhibitors - drugs
- SARTAN
1. losartan
2. Candesartan
3. Valsartan
Angiotensin II receptor inhibitors - mechanism of action
selectively block binding of angotenisn II to AT1 receptor –> effects similar to ACE inhibitors but ARBs do not incrrease Bradykinin
Angiotensin II receptor inhibitors - clinical use
- hypertension
- HF
- proteinuria
- diabetic neuropathy
- ADPKD
when intolerance with ACE inhibitors (eg. cough, angioedema)
Angiotensin II receptor inhibitors - adverse effects
- hyperkalemia
- decreased GFR (in cation with bilateral artery stenosis)
- teratogen
- hypotension
Aliskiren - mechanism of action
direct renin inhibitor –> block conversion of angiotenisongen to angiotensin I
direct renin inhibitor - drug
Aliskiren
Aliskiren - clinical use
hypertension
Aliskiren - adverse effects
- Hperkalemia
- low GFR
- Hypotension
RELATIVELY CONTRAINDICATED IN PATIENS ALREADY TAKING ACE inhibitors or ARBs
Aliskiren - contraindications
relatively contraindicated in patients taking already ACE inhibitors or ARBs
Ammonia Toxicity - symptoms
- Rhinorrhea
- Scratchy throat
- Chest tightness
- Cough
- Dyspnea
- Eye irritation
Lifelong thizide diuretics mimics
Gitelman syndrome
Thiazide diuretics - drugs
- Hydrochlorothiazide
- chlorthalidone
- metolazone
diuretics for nephrogenic DI
- amiloride
2. thiazide
Diuretics with sulfa allergy
- acetazolamide
- sulfonamide loop diuretics
- Thuazide diuretics
1 extra thiazide
indapamide
ACE inhibitors causes dry cough due to increase in (except bradykinin)
- sub P
2. prostagladins