Organisms Exhange Substances With Their Environment (topic 3) Flashcards

1
Q

Describe the relationship between the size and structure of an organism and
its surface area to volume ratio (SA:V)

A

Describe the relationship between the size and structure of an organism and
its surface area to volume ratio (SA:V)
● As size increases, SA:V tends to decrease
● More thin / flat / folded / elongated structures increase SA:V

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

How is SA:V calculated? Use an example

A

Divide surface area (size length x side width x number of sides) by volume (length x width x depth)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Suggest an advantage of calculating SA:mass for organisms instead of SA:V

A

Easier / quicker to find / more accurate because irregular shapes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is metabolic rate? Suggest how it can be measured

A

● Metabolic rate = amount of energy used up by an organism within a given period of time
● Often measured by oxygen uptake → as used in aerobic respiration to make ATP for energy release

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Explain the relationship between SA:V and metabolic rate

A

As SA:V increases (smaller organisms), metabolic rate increases because:
● Rate of heat loss per unit body mass increases
● So organisms need a higher rate of respiration
● To release enough heat to maintain a constant body temperature ie. replace lost heat

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Explain the adaptations that facilitate exchange as SA:V reduces in larger
organisms

A
  1. Changes to body shape (eg. long / thin)
    ● Increases SA:V and overcomes (reduces) long diffusion distance / pathway
  2. Development of systems, such as a specialised surface / organ for gaseous exchange e.g. lungs:
    ● Increases (internal) SA:V and overcomes (reduces) long diffusion distance / pathway
    ● Maintain a concentration gradient for diffusion eg. by ventilation / good blood supply
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Explain how the body surface of a single-celled organism is adapted for gas
exchange

A

● Thin, flat shape and large surface area to volume ratio
● Short diffusion distance to all parts of cell → rapid diffusion eg. of O2 / CO2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Describe the tracheal system of an insect

A
  1. Spiracles = pores on surface that can open / close to allow diffusion
  2. Tracheae = large tubes full of air that allow diffusion
  3. Tracheoles = smaller branches from tracheae, permeable to allow gas exchange with cells
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Explain how an insect’s tracheal system is adapted for gas exchange

A

● Tracheoles have thin walls
○ So short diffusion distance to cells
● High numbers of highly branched tracheoles
○ So short diffusion distance to cells
○ So large surface area
● Tracheae provide tubes full of air
○ So fast diffusion
● Contraction of abdominal muscles (abdominal
pumping) changes pressure in body, causing air to
move in / out
○ Maintains concentration gradient for diffusion
● Fluid in end of tracheoles drawn into tissues by
osmosis during exercise (lactate produced in
anaerobic respiration lowers ψ of cells)
○ Diffusion is faster through air (rather than
fluid) to gas exchange surface

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Explain structural and functional compromises in terrestrial insects that
allow efficient gas exchange while limiting water loss

A

● Thick waxy cuticle / exoskeleton → Increases diffusion distance so less water loss (evaporation)
● Spiracles can open to allow gas exchange AND close to reduce water loss (evaporation)
● Hairs around spiracles → trap moist air, reducing ψ gradient so less water loss (evaporation)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Explain how the gills of fish are adapted for gas exchange

A

● Gills made of many filaments covered with many lamellae
○ Increase surface area for diffusion
● Thin lamellae wall / epithelium
○ So short diffusion distance between water / blood
● Lamellae have a large number of capillaries
○ Remove O2 and bring CO2 quickly so maintains
concentration gradien

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Counter current flow:

A
  1. Blood and water flow in opposite directions through/over lamellae
  2. So oxygen concentration always higher in water (than blood near)
  3. So maintains a concentration gradient of O2 between water and blood
  4. For diffusion along whole length of lamella

If parallel flow, equilibrium would be reached so oxygen wouldn’t diffuse into blood along the whole gill plate.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Explain how the leaves of dicotyledonous plants are adapted for gas
exchange

A

● Many stomata (high density)→ large surface area for gas exchange (when opened by guard cells)
● Spongy mesophyll contains air spaces → large surface area for gases to diffuse through
● Thin → short diffusion distance

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Xerophyte

A

plant adapted to live in very dry conditions eg. Cacti and marram grass

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Explain structural and functional compromises in xerophytic plants that
allow efficient gas exchange while limiting water loss

A

● Thicker waxy cuticle
○ Increases diffusion distance so less evaporation
● Sunken stomata in pits / rolled leaves / hairs
○ ‘Trap’ water vapour / protect stomata from wind
○ So reduced water potential gradient between leaf / air
○ So less evaporation
● Spines / needles
○ Reduces surface area to volume ratio

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Describe the gross structure of the human gas exchange system

A

Lungs
Trachea -> bronchi-> bronchioles-> alveoli (air sacs) and capiallary network

17
Q

Explain the essential features of the alveolar epithelium that make it
adapted as a surface for gas exchange

A

● Flattened cells / 1 cell maintains maintains concentration gradient
Describe how gas exchange occurs in the lungs
thick → short diffusion distance
● Folded → large surface area
● Permeable → allows diffusion of O2 / CO2
● Moist → gases can dissolve for diffusion
● Good blood supply from large network of capillaries

18
Q

Describe how gas exchange occurs in the lungs

A

● Oxygen diffuses from alveolar air space into blood down its concentration gradient
● Across alveolar epithelium then across capillary endothelium

19
Q

Explain the importance of ventilation

A

● Brings in air containing higher conc. of oxygen & removes air with lower conc. of oxygen
● Maintaining concentration gradients

20
Q

Explain how humans breathe in and out (ventilation) - inspiration

A

Inspiration (breathing in)
1. Diaphragm muscles contract → flattens
2. External intercostal muscles contract, internal
intercostal muscles relax (antagonistic)→
ribcage pulled up / out
3. Increasing volume and decreasing pressure
(below atmospheric) in thoracic cavity
4. Air moves into lungs down pressure gradient

21
Q

Explain how humans breathe in and out (ventilation - expiration

A

Expiration (breathing out)
1. Diaphragm relaxes → moves upwards
2. External intercostal muscles relax, internal
intercostal muscles may contract → ribcage
moves down / in
3. Decreasing volume and increasing pressure
(above atmospheric) in thoracic cavity
4. Air moves out of lungs down pressure gradient

22
Q

Suggest why expiration is normally passive at rest

A

● Internal intercostal muscles do not normally need to contract
● Expiration aided by elastic recoil in alveoli

23
Q

Suggest how different lung diseases reduce the rate of gas exchange

A

● Thickened alveolar tissue (eg. fibrosis)→ increases diffusion distance
● Alveolar wall breakdown → reduces surface area
● Reduce lung elasticity → lungs expand / recoil less → reduces concentration gradients of O2 / CO2

24
Q

Suggest how different lung diseases affect ventilation

A

● Reduce lung elasticity (eg. fibrosis - build-up of scar tissue)→ lungs expand / recoil less
○ Reducing volume of air in each breath (tidal volume)
○ Reducing maximum volume of air breathed out in one breath (forced vital capacity)
● Narrow airways / reduce airflow in & out of lungs (eg. asthma - inflamed bronchi)
○ Reducing maximum volume of air breathed out in 1 second (forced expiratory volume)
● Reduced rate of gas exchange → increased ventilation rate to compensate for reduced oxygen in blood

25
Q

Suggest why people with lung disease experience fatigue

A

Cells receive less oxygen → rate of aerobic respiration reduced → less ATP made

26
Q

Suggest how you can analyse and interpret data to the effects of pollution,
smoking and other risk factors on the incidence of lung disease

A

● Describe overall trend → eg. positive / negative correlation between risk factor and incidence of disease
● Manipulate data → eg. calculate percentage change
● Interpret standard deviations → overlap suggests differences in means are likely to be due to chance
● Use statistical tests → identify whether difference / correlation is significant or due to chance
○ Correlation coefficient → examining an association between 2 sets of data
○ Student’s t test → comparing means of 2 sets of data
○ Chi-squared test → for categorical data

27
Q

Suggest how you can evaluate the way in which experimental data led to
statutory restrictions on the sources of risk factors

A

● Analyse and interpret data as above and identify what does and doesn’t support statement
● Evaluate method of collecting data
○ Sample size → large enough to be representative of population?
○ Participant diversity eg. age, sex, ethnicity and health status → representative of population?
○ Control groups → used to enable comparison?
○ Control variables eg. health, previous medications → valid?
○ Duration of study → long enough to show long-term effects?
● Evaluate context → has a broad generalisation been made from a specific set of data?
● Other risk factors that could have affected results?

28
Q

Explain the difference between correlations and causal relationships

A

● Correlation = change in one variable reflected by a change in another - identified on a scatter diagram
● Causation = change in one variable causes a change in another variable
● Correlation does not mean causation → may be other factors involved

29
Q

Explain what happens in digestion

A

● Large (insoluble) biological molecules hydrolysed to smaller (soluble) molecules
● That are small enough be absorbed across cell membranes into blood

30
Q

Describe the digestion of starch in mammals

A

● Amylase (produced by salivary glands / pancreas) hydrolyses starch to maltose
● Membrane-bound maltase (attached to cells lining ileum) hydrolyses maltose to glucose
● Hydrolysis of glycosidic bonds

31
Q

Describe the digestion of disaccharides in mammals

A

● Membrane-bound disaccharidases hydrolyse disaccharides to 2 monosaccharides:
○ Maltase- maltose → glucose + glucose
○ Sucrase- sucrose → fructose + glucose
○ Lactase- lactose → galactose + glucose
● Hydrolysis of glycosidic bond

32
Q

Describe the digestion of lipids in mammals, including action of bile salts

A

● Bile salts (produced by liver) emulsify lipids causing them to form smaller lipid droplets
● This increases surface area of lipids for increased / faster lipase activity
● Lipase (made in pancreas) hydrolyses lipids (eg. triglycerides)→ monoglycerides + fatty acids
● Hydrolysis of ester bond

33
Q

Describe the digestion of proteins by a mammal

A

● Endopeptidases- hydrolyse internal (peptide) bonds
within a polypeptide → smaller peptides
○ So more ends / surface area for exopeptidases
● Exopeptidases- hydrolyse terminal (peptide) bonds at
ends of polypeptide → single amino acids
● Membrane-bound dipeptidases- hydrolyse (peptide)
bond between a dipeptide → 2 amino acids
● Hydrolysis of peptide bond

34
Q

Suggest why membrane-bound enzymes are important in digestion

A

● Membrane-bound enzymes are located on cell membranes of epithelial cells lining ileum
● (By hydrolysing molecules at the site of absorption they) maintain concentration gradients for absorption

35
Q

Describe the pathway for absorption of products of digestion in mammal

A

Lumen (inside) of ileum → cells lining ileum (part of small intestine)→ blood

36
Q

Describe the absorption of amino acids and monosaccharides in mammals

A

Co-transport:
1 ● Na+ actively transported from
epithelial cells lining ileum to
blood (by Na
+/K+
pump)
● Establishing a conc. gradient
of Na
+ (higher in lumen than
epithelial cell)
2 ● Na+ enters epithelial cell down
its concentration gradient with
glucose against its
concentration gradient
● Via a co-transporter protein
3 ● Glucose moves down a conc.
gradient into blood via
facilitated diffusion

37
Q

Describe the absorption of lipids by a mammal, including the role of micelles

A

● Micelles contain bile salts, monoglycerides and fatty acids
○ Make monoglycerides and fatty acids (more) soluble in water
○ Carry / release fatty acids and monoglycerides to cell / lining of ileum
○ Maintain high concentration of fatty acids to cell / lining
● Monoglycerides / fatty acids absorbed (into epithelial cell) by diffusion (lipid soluble)
● Triglycerides reformed in (epithelial) cells and aggregate into globules
● Globules coated with proteins forming chylomicrons which are then packaged into vesicles
● Vesicles move to cell membrane and leave via exocytosis
○ Enter lymphatic vessels and eventually return to blood circulation