numeros reales Flashcards
propiedades +
∀ a, b, c ∈ R
asociativa = (a+b) + c = a+ (b+c)
conmutativa = (a + b) = (b + a)
∀ a ∈ R , ∃ de elemento neutro = 0 ∈ R tq a + 0 = a
∀ a ∈ R , ∃ de elemento opuesto= ∃ -a ∈ R tq a + (-a) = 0
propiedades .
∀ a, b, c ∈ R
asociativa = (a.b).c = a. (b.c)
conmutativa = (a.b) = (b.a)
∀ a ∈ R , ∃ de elemento neutro = ∃ 1 ∈ R tq 1 ¡= 0 y 1.a = a
∀ a ∈ R , ∃ de elemento inverso = para a ¡= 0 ∃ a^-1 tq a . a^-1 = 1
a(bc)= ab +ac
propiedad de orden
a, b ∈ R se cumple a < b o a = b o b<a
si a<b y b<c entonces a<c (transitividad)
si a < b entonces ∀ c ∈ R se cumple que a + c < b
+ c
si a < b y c > 0 entonces ac < bc
desigualdades propiedades
si a > b enticnes - a < - b
si a > b y c < 0 entonces ac < bc
si a^-1 > 0 si y solo si a > 0
si a > b y ab > 0 entonces a^-1 < b^-1
si a > b y c > d entonces (a+c) > (b+d)
-a > 0 si y solo si a < 0
si a != 0 entonces a^2 > 0
valor absuluto def
si a ∈ R se llama valor absoluto de a y lo denotamos |a|. si:
|a| = a si a >= 0
-a si a < 0
valoor absoluto propiedades
|a + b|<= |a|+|b|
|ab|=|a||b|
|X|<= a si y solo si -a <= x <= a con a>=0
|X| >= a si y solo si x >= a o x <= -a con a >= 0
distancia def
a, b ∈ R d(a,b) = |b-a|
distancia propiedades
d(a ,b ) >= 0 d(a,b)=0 si y solo si a =b
d(a,b) = d(b,a)
d(a,b) <= d(a,c) + d(c,b) ∀ a,b,c ∈ R