funciones Flashcards

1
Q

DEFINICION: suma

A

si f y g son funciones reales cuyos dominios son dom f dom g entonces f + g son funciones con dominio dom f ∩ dom g y su regla de asignacion es
(f + g)(x) = f(x) + f(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

DEFINICION: producto

A

si f y g son funciones reales cuyos dominios son dom f dom g entonces f * g son funciones con dominio dom f ∩ dom g y su regla de asignacion es
(f * g)(x) = f(x) * f(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

PROPIEDADES: suma

A

A1 = f + g ∈ R → R si f,g ∈ R → R
A2 = (f + g) + h = f + (g +h) si f,g,h ∈ R → R
A3 = f + g = g + f si f,g ∈ R → R
A4 = existe un unico elemento en R → R denotado 0 (funcion nula) tal que f + 0 = f ∀ f ∈ R → R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

PROPIEDADES: producto

A

M1 = f * g ∈ R → R si f,g ∈ R → R
M2 = (f * g) * h = f * (g * h) si f,g,h ∈ R → R
M3 = f * g = g * f si f,g ∈ R → R
A4 = existe un unico elemento en R → R denotado “1” tal que
f + 1 = f ∀ f ∈ R → R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

PROPIEDAD : distributiva

A

AM1 = f (g +h) = f * g + f * h
si f,g,h ∈ R → R

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

DEFINICION 1:

A

si f es una funcion R → R, -f es la funcion con el mismo dominio y regla de asignacion (-f)(x)= -f(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

DEFINICION 2:

A

si f,g ∈ R → R entonces
f - g = f + (-g)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

DEFINICION 3:

A

si f R → R entonces 1/f es la funcion cuyo dom sera
{x ∈ dom f / f(x)=/0} y la regla es (1/f)(x)= 1/f(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly