M5: Multiplying Polynomials Flashcards
(7x^2 + 8x + 2) (8x^2 + 6x + 5)
Use the box method to slove. 7x^2 8x 2 \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ 8x^2 | 56x^4 | 64x^3 | 16x^2 | 6x | 42x^3 | 48x^2 | 12x | 5 | 35x^2 | 40x | 10 | ----------------------------------- Add the like terms together 56x^4 + 106x^3 + 99x^2 + 52x + 10
(-3x^2y^4)(-6 x^3y)
18x^5y^5
(x - 7)(x + 7)
x^2 - 49
(3x + 2) (2x + 5)
6x^2 + 19x + 10
(4x^2 - 4) (2x + 1)
8x^3 + 4x^2 - 8x - 4
(4x + 2) (x - 2)
4x^2-6x-4
(x^ 2 - 6) (x - 4)
x^3 -4x^2 -6x + 24
(x ^2 + 8) (x - 5)
x^3 - 5x^2 + 8x - 40
(x + 6) (x - 4)
x^2 + 2x − 24
(x - 6)(x + 1)
x^2 − 5x − 6
(5x^2 + 3y +5 )(y + 9)
5x^2 y+ 45x^2+ 3y^2+ 32y+ 45
(x^2 + 11) (x + 6)
x^3 + 6x^2 + 11x + 66
(x + 3) (x + 7)
x^2 + 10x + 21
(x^2 + 9 )(x - 3)
x^3 − 3x^2 + 9x − 27
(2x + 5)(x - 3)
2x^2 - x - 15
(x - 3) (x^2 + 2x + 1)
x^3 − x^2 − 5x − 3
(x + 4) (x^4 + x2 + 1)
x^5 + 4x^4 + x^3 + 4x^2 + x + 4
(x^2 + x + 3)(x^3 - x^2 + 4)
x^5 + 2x^3 + x^2 + 4x + 12
(x^2 + x)(x^3)
x^5 + x^4
(x^2+2)(4x+20)
24x^3+8x+40
(2x^2+2)(-3x+15)
-3x^3+30x^2-6x+30
(x^2-5)(10x+20)
10x^3+20x^2-50x-100
(-5x^2+1)(3x-2)
-15x^2+13x-2
(-3x-2)(4x-5)
-12x^2+7x+10
(6 x ^3)(-4 x ^4)
(6 x ^3)(-4 x ^4)
= (6 ∙ -4)(x ^3 ∙ x ^4)
= (6 ∙ -4)(x ^3 ^+ ^4)
= -24 x^7
Multiplying Monomials
When multiplying Monomials, each term from one monomials must be multiplied by each term of the other monomials. Ex, a^m ∙ a ^n = a ^(m + n).