Linear combinations of random variables Flashcards
Mean of a function of a random variable ๐ฌ(๐ฟ) = ยต
๐ธ(๐๐ + ๐) = ๐ ร ๐ธ(๐) + ๐
Variance of a function of a random variable ๐ฝ๐๐(๐ฟ) = ๐ยฒ (3)
โด ๐๐๐(๐๐ + ๐) = ๐ยฒ ร ๐๐๐(๐)
โด ๐๐(๐๐ + ๐) = |๐| ร ๐๐(๐)
Note: ๐๐๐(๐) = ๐ธ(๐ยฒ) โ [E(X)]ยฒ
Sum and difference of independent random variables
For T = X + Y
E(T) = E(X + Y) = E(X) + E(Y)
Var(T) = Var(X + Y) = Var(X) + Var(Y)
For T = X - Y
E(T) = E(X - Y) = E(X) - E(Y)
Var(T) = Var(X - Y) = Var(X) + Var(Y)
Any random variables vs independent random variables
For any random variables:
E(aX + bY) = a x E(x) + b x E(Y)
For independent random variables:
Var(aX + bY) = aยฒ x Var(X) + bยฒ x Var(Y)
Linear functions and combinations of normally distributed random variables
Linear combination of independent normal variables are also normally distributed
The distribution of the sum of 2 independent Poisson variables
X~Po(ฮปโ) and Y~Po(ฮปแตง) then,
E(X + Y) = E(X) + E(Y) = ฮปโ + ฮปแตง
Var(X + Y) = Var(X) + Var(Y) = ฮปโ + ฮปแตง
Mean and variance of X and Y are equal hence X + Y have a poisson distribution given that X and Y are independent
Note:
Linear combination of independent poisson variables of the for aX + bY can not have a poisson distribution