Limit Laws Flashcards
If L, M, c & k are real numbers & lim(h->0) f(x) = L & lim(h->0) g(x) = M, then:
lim(x->c) (f(x) + g(x))
L + M
lim(x->c) (f(x) - g(x))
L - M
lim(x->c) (k . f(x))
k . L
lim(x->c) (f(x) . g(x))
L . M
lim(x->c) (f(x)/g(x))
L/M, M does not = 0
lim(x->c) (f(x))^n
L^n, where n is a positive integer
lim(x->c) nrt(f(x))
nrt(L) = L^(1/n), where n is a positive integer
L’Hopital’s rule
Used to solve limits in indeterminate forms (0/0, INF/INF, 0xINF, INF–INF, 0^0, INF^0, 1^INF). If lim(x->a) f(x) = lim(x->a) g(x), f & g are differentiable in an open interval containing a, & g’(x) does not = 0 in an open interval if x does not = 1, then the lim(x->a) (f(x)/g(x)) = lim(x->a) (f’(x)/g’(x)).
lim 0 * INF
lim f(x)g(x) = lim f(x)/(1/g(x)) = lim g(x)/(1/f(x))
lim INF–INF
lim (f(x)-g(x)/sqrtf(x)-sqrtg(x))
lim 0^0 or lim INF^0 or lim 1^INF
lim f(x)^g(x) = L, then: ln(L) = lim g(x)lnf(x) -> ln(L) = lim lnf(x)/(1/g(x))