II-Theories-3 Flashcards
1
Q
Investor utility
function
A
2
Q
Capital Allocation Line CAL
- 是什么
- 性质2
A
- a portfolio of a risk-free asset and risky asset
- 一条直线,不同点代表组合中两种资产权重
标准差即risky asset的标准差*权重
3
Q
From a portfolio of 2 assets,
evolve to
Effective Frontier
A
4
Q
Effective Frontier Chart
- 横轴/纵轴
- Minimum-variance frontier
- Global Minimum-Variance Portfolio
- Effective Frontier
A
5
Q
- From Effective Frontier to
Optimal Risky Portfolio (chart)
- why it’s optimal?
A
- 见图
- 无风险资产与Effective Frontier上其余任何一点连接,组成的portfolio中都可以找到一点,CAL比其相同risk但return更高
6
Q
from Optimal risky portfolio
+ risk-free asset
evolve to
Optimal Investor Portfolio
A
7
Q
Capital Market Line CML
- 由来
- 横纵轴
- 斜率
- 原optimal risky portfolio=,包含
- 描述方程
A
- CAL由于每个投资者对不同组合收益的perseptive不同,会有多个。
CML假设所有投资者预期相同,客观存在一个最好的market portfolio.
CAL多个,CML只有一个
- x:portfolio标准差,y: expected return
- 见方程
- market portfolio, 包含all risky assets, regardless tradable/investible or not
- 图
8
Q
【risks】
- risk分为
- total variance=
- 公式
A
- systematic / nonsystematic risk
- total variance=
systematic variance+
nonsystematice variance
【not 标准差】
3.图
9
Q
Return-Generating Models
4
最后一个加公式
A
- multi-factor model- macroeconomic/ fundemental/ statistical
- 3-factor, 4-factor
- single-index
- market model
α+βX+e
10
Q
- single asset β
- portfolio β二种
A
- 见图
- β=rf+(w1β1+w2β2)[Rm-rf]
β=σp/σm
11
Q
CAPM模型
6大假设
A
- investors are risk-averse, u-maximizing, rational
- investors have same expectations, valuation
- investors are price takers
- same single holding period
- market is fractionless, no transaction costs
- all investments are infinitety divisible
12
Q
security market line SML
- 图形
- 横轴
- 斜率
- 用途2
A
- 图
- β
- Rm-Rf
- CAPM:确定expected return
判断新的securities 高估还是低估
13
Q
比较SML&CML
- measure of risk
- applicaition
- slope
- 涵盖的资产
A
- CML: 只有有效边界上的资产组合
SML:任一资产
14
Q
【evaluation】
- sharpe ratio等式
- 衡量哪种风险?
- Treynor ration等式
- 衡量哪种风险?
A
- (Rp-rf)/σp
总风险
- (Rp-rf)/βp
系统性风险
15
Q
【evaluation】
- M2 公式
衡量哪种风险
- Jensen’s α 两个公式
衡量哪种风险
A
- =(Rp-rf) αm/αp - (Rm-rf)
total risk
- α=(Rp-rf) - β(Rm-rf)
= Rp - CAPM
系统性风险