Homeostasis Flashcards
Definition of homeostasis?
The maintenance of a constant internal environment
Types of regulation?
Body temp - Thermoregulation
pH of blood - Conc of Co2
Blood Glucose conc - Glucoregulation
Blood water conc - osmoregulation
Importance of temperature regulation?
Body temperature too high - enzymes denature - enzyme molecules vibrate too much - hydrogen bonds break - 3D shape breaks - active site changed - no longer works as catalyst - metabolic reactions less efficient
Body temperature too low - enzyme activity reduced - slow rate of metabolic reactions
Optimum temp - 37 degrees
Importance of pH regulation?
If blood pH is too high or too low enzymes become denatured - hydrogen bonds that hold them in their 3D shape are broken - shape of active site is changed and no longer works as a catalyst - metabolic reactions are less efficient
Optimum pH - 7
Importance of glucose regulation?
If blood glucose concentration is too high the water potential of blood is reduced - water diffuses out of cells by osmosis - cells shrivel up and die
If too low, cells are unable to carry out normal activities because there isn’t enough glucose for respiration to provide energy
Monitored by the pancreas which releases hormones (insulin and glucagon) from its endocrine glands
Homeostasis by negative feedback
Uses receptors, a communication system and effectors
Receptors detect when levels are too low or too high - communicated through the nervous or hormonal system to effectors
Effectors respond to counteract the change by negative feedback
Has limits, can’t counteract too big of changes
Effectiveness of multiple negative feedback systems?
Gives more control over changes
Can actively increase or decrease a level so it returns to normal
Only one negative feedback mechanism means you could only turn it off or on, you could only actively change a level in one direction
Only one would mean a slower response and less control
Amplifying a change?
Some changes trigger a positive feedback mechanism - amplifies the change
Effectors respond to further increase the level away from the normal level
Positive feedback is useful to rapidly activate something - blood clotting after an injury
Can also happen when a homeostatic system breaks down
Is not part of homeostasis as it does not maintain the internal environment
Postive feedback examples?
Clotting:
Platelets become activated and release a chemical - triggers more platelets to be activated - very quickly a blood clot forms at the injury site - ends with negative feedback when the blood clot has been formed
Hypothermia (breakdown of homeostatic system):
Low body temperature (below 35 degrees)
Happens when heat’s lost from the body quicker than it can be produced
Body temperature falls - brain doesn’t function properly - shivering stops - body temp falls faster
Positive feedback takes body temp further away from normal level
Glucoregualtion: Blood glucose gets too high?
Intake of glucose rich foods
Rise in blood glucose level detected by B-cells in the islets of Langerhans in pancreas
B-cells release insulin
Insulin binds to specific receptors on the cell membranes of liver cells and muscle cells
Insulin increases permeability of muscle-cell membranes to glucose - cells take up more glucose - done by increasing number of channel proteins in the cells
Activates enzymes in the liver and muscle cells that convert glucose to glycogen - glycogenesis
Cells store glycogen in their cytoplasm as energy source
Insulin also increases the rate of respiration of glucose in muscle cells
Glucoregualtion: Blood glucose gets too low?
Falls due to exercise or fasting
Fall in blood glucose level detected by alpha cells in the Islets of Langerhans in Pancreas
Alpha cells release glucagon which travels to target cells in the blood
Binds to specific receptors on liver cells
Glucagon activates enzymes in liver cells that break down glycogen into glucose - glycogenolysis
Glucagon activates enzymes that form glucose from non-carbohydrates - gluconeogenesis
Glucagon decreases the rate of respiration in cells
Qualities of hormones in glucoregulation?
They travel in blood - slower than nervous impulses
Not broken down as quickly as neurotransmitters - effects last for longer
Insulin and glucose transporters?
GLUT4 is a channel protein found in skeletal and cardiac muscle cells - is a glucose transporter
When insulin levels are low - GLUT4 is stored in vesicles in the cytoplasm
When insulin binds to the receptors it triggers the movement of GLUT4 to the membrane
Glucose can now be transported into the cell through GLUT4 protein by facilitated diffusion
Work of adrenaline in glucoregualtion?
Adrenaline is a hormone secreted from the adrenal gland
During blood glucose concentration it is secreted - stressed or when exercising
Binds to receptors in the cell membrane of liver cells
Activates glycogenolysis (breakdown of glycogen to glucose)
Inhibits glycogenesis (Synthesis of glycogen from glucose)
Activates glucagon secretion and inhibits insulin secretion - increases glucose concentration
More glucose available for muscles to respire - body ready for action
Adrenaline and glucagon working via a second messenger?
Receptors for adrenaline and glucagon have specific tertiary structures that make them complimentary in shape to their respective hormones
Adrenaline and glucagon bind to their receptors and activate an enzyme called adenylate cyclase
This converts ATP into a chemical signal called a ‘second messenger’
Second messenger is called cyclic AMP (cAMP)
cAMP activates an enzyme called protein kinase A
Activates a cascade - breaks down glycogen into glucose - glycogenolysis