graphs and functions Flashcards

1
Q

what is a function?

A

a mathematical process that uniquely links one or more variables to another variable eg advertising to sales

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

what does a function always have?

A

an input (domains)

a rule for processing the input(s)

an output

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

what are some real world functions?

A

business profit calculation: revenue- costs = profit

finance loan interest: principle amount we borrow x interest rate x time

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

what makes a function a function?

A

for each value of x (input) there is only ONE corresponding value of y (output) there can only be one value of y for a value of x

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

difference between x and y?

A

x is along the corridor y is up the stairs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

how would you know if something was a function of something else?

A

if y = 0.4x + 50z then y is a function of x and z or in short y = f(x, z)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

generate the function definition and draw the graph showing unit costs for the example.
a compaany charges £2 per unt up to 100 kg with a 20% discount for orders 100kg or more and 30% for 200kg or more

A

first find how much the discounts would be
100 kg up to = 2
100kg or more = 2 x 0.8 = 1.60
200kg or more = 2 x 0.7 = 1.40

plot these on a graph using constant lines across if all values were the same there would be one long constant line

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

what is the linear function?

A

y = ax + b

gradient = a
intercept = b

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

in a linear function what happens when y increases or decreases?

A

it increases by a constant amount of x
eg for y = ax + b then if we increase x by one unit y will increase by the amount a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

how do you find the gradient?

A

(change in y) - (change in x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

what is the intercept?

A

point ar which function cuts the vertical axis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

what is the gradient?

A

steepness of the slope if we change the x then y will change by the gradient

y =10x + 100 this means that if x changed by 1 y would change by 10 and 100 is the constant

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

when drawing a function what must we consider?

A

put it into the function of y = ax = b to find y when x = certain points on your graph

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

how to find the equation of the line?

A

put both brackets into y = ax + c equation
rearange first equation and put both of them togther
then shift everything until you have the value of a
find the value of b

or to find the gradient For example on a straight line with points (4, 2) and (6, 8) we take the difference between the y coordinates (8 – 2 = 6) and the difference between the x coordinates (6 – 4 = 2) , divide 6 by 2 and we have found a gradient of 3 .

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

is a linear function for straight or curved lines?

A

straight

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

why cant we use a straight line to join the points on a curved graph?

A

because it would be inaccurate

17
Q

how are quadratic functions expressed?

A

y = ax² + bx + c

18
Q

what happens when “a” is positive?

A

the graph should have a smiley shaped curve

19
Q

what happens when “a” is negative?

A

the graph will have a frowny shaped curve

20
Q

what is the root?

A

where the graph cuts x axis and y is 0

21
Q

how do you find the root?

A

x = -b + or - the square root of b² - 4ac/ 2a

22
Q

whats the equation for revenue?

A

price x quantity sold

23
Q

what is the profit formula?

A

revenue - cost

24
Q

when do we find the breakeven point?

A

when profit = 0
when revenue = cost

25
Q

how to find breakeven on a graph

A

1 find the values of costs and revenue on each x point
2 plot both lines and breakeven is when the two lines meet

26
Q

what form is an exponential function in>

A

y = b^x

b is the base
x is the power/ exponent and it tells us how many times b multiplies by itself

eg y = 2^x and x = 3 then y = 2^3 and that equals 222 and that equals 8
can also be done for negative numbers

27
Q

in an exponential function what happens when y increases or decreases?

A

y increases by a constant factor with each unit of x
exponential function should grow faster

28
Q

what does a growth and decay function look like for exponential?

A

growth = curve up to right
decay = start from top left curve down

29
Q

example of exponential functions - finance (compound interest)

A

A = Pe^rt

A is the final amount
P is the principle amount
e is the base
r is the annual interest rate
t is time in years

30
Q

the sales of a product in year 0 are 200 units and are increasing by 10% each year what are the sales in year 1 and year n? if sales decrease by 15% what are the sales in year n?

A

y = b^x

year 0 = 200 units
10% increase = x 1.1
base is 1.1
yrn = 200 x 1.1^n

15% decrease = x 0.85
base is 0.85
yrn = 200 x 0.85^n

31
Q

what is a logarithmic formula?

A

reversing the process to find x so instead of 32 = 2^x we use the log in our calculator and log2,2^x as x is the base which will give you x by itself and log2,32 and that will give you the value of x

if you have a square the inverse is to square root

the inverse of e^x is log e,e^x or ln instead of log e on your calculator

32
Q

what is log (xy) equal to?

A

log(x) + log(y)

33
Q

what is log (x/y) equal to?

A

log(x) - log(y)

34
Q

what is the log (x^k) (log x to the power of k) equal to?

A

klog (x)

35
Q

what values will always give x as the answer?

A

10^log(x)
e^ln(x)
log(10^x)
ln(e^x)

36
Q

what is th opposite of log e/ ln?

A

e^x