FA Antibiotics Flashcards
Penicillin G
IV
Penicillin V
Oral
Penicillin MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Penicillin Clinical Use
SASS: S. pneumo, Actinomyces, S. pyogenes, Syphilis
Generally: Bactericidal for GramPos/Neg cocci, GramPos rods, spirochetes
Penicillin Toxicity
HS, hemolytic anemia
Penicillin Resistance
Beta-lactamase cleavage of beta-lactam ring
Aminopenicillin Drugs
Amoxicillin, Ampicillin
Aminopenicillin MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes Wider spectrum (AMPed up penicillins)
Aminopenicillin Clinical Use
Wider spectrum –> HHELLPS kill enterococi: H. flu, H. pylori, E. coli, Listeria, Proteus, Shigella, Salmonella, enterococci
Aminopenicillin with better oral bioavailability
AmOxicillin
Aminopenicillin Toxicity
HS, Amp Rash, Pseudomembranous Colitis
Aminopenicillin Resistance
Beta-lactamase cleavage of beta-lactam ring
Penicillinase-Resistant Penicillin Drugs
Dicloxacillin, Nafcillin, Oxacillin, Methicillin
Penicillinase-Resistant Penicillin MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Narrower-spectrum
Bulky R-group prevents beta-lactamase access to ring
Penicillinase-Resistant Penicillin Clinical Use
S. aureus (not MRSA)
Antipseudomonal Penicillin Drugs
Ticarcillin, Piperacillin (+ beta-lactamase inhibitor)
Antipseudomonal Penicillin MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Extended spectrum
Susceptible to beta-lactamases
Antipseudomonal Penicillin Clinical Use
Pseudomonas, GramNeg Rods
Antipseudomonal Penicillin Toxicity
HS
Beta-lactamase inhibitors
Clavulanic Acid, Sulbactam, Tazobactam
Cephalosporin MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Less susceptible to beta-lactamases
Bactericidal
Cephalosporin Toxicity
HS, autoimmune hemolytic anemia, disulfiram-like rxn w/EtOH, Vit K deficiency
Cross-reactive w/penicillins
Increase nephrotoxicity of Aminoglycosides
Cephalosporin Resistance
structural change in PBPs (transpeptidases)
These drugs can cause a disulfiram-like reaction with alcohol
Metronidazole, Cephalosporins
1st Gen Cephalosporin Drugs
Lin, Lex: Cefazolin, Cefalexin
1st Gen Cephalosporin Clinical Use
PEcK: Proteus, E. coli, Klebsiella
2nd Gen Cephalosporin Drugs
Fake Fox Fur: Cefaclor, Cefoxitin, Cefuroxime
2nd Gen Cephalosporin Clinical Use
HEN PEcKS: H. flu, Enterobacter, Neisseria, Proteus, E. coli, Klebsiella, Serratia
3rd Gen Cephalosporin Drugs
Tri, Tax, Taz: Ceftriaxone, Cefotaxime, Ceftazidime
3rd Gen Cephalosporin Clinical Use
Triax: Meningitis, Gonorrhea, disseminated Lyme
Taz: Pseudomonas
4th Gen Cephalosporin Drugs
Cefepime
4th Gen Cephalosporin Clinical Use
Pseudomonas, GramNeg, additional GramPos activity
5th Gen Cephalosporin Drugs
Ceftaroline
5th Gen Cephalosporin Clinical Use
MRSA, broad GramPos and GramNeg coverage (not Pseudomonas)
These antibiotics are relatively safe in pregnancy
Beta-lactams, Azithromycin, Clindamycin, Metronidazole
These antibiotics can be used against Pseudomonas
Aminoglycosides (GNATS), Aztreonam, Carbapenems, Cefepime, Ceftazidime, Fluoroquinolones, Ticarcillin/Piperacillin, Colistin and Ploymixin B (MDR Strains)
Carbapenem Drugs
Imipenem, Meropenem, Ertapenem, Doripenem
Carbapenem MOA
Bind PBPs, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Broad spectrum
Beta-lactamase resistant
Imipenem always + cilistatin to reduce inactivation by dihydropeptidase I in renal tubules
Carbapenem Clinical Use
GramPos Cocci, GramNeg Rods, Anaerobes
Imipenem always adminstered with what, and why?
Cilastatin to reduce inactivation by dihydropeptidase I in renal tubules
These drugs can be given to a pt w/penicillin allergy
Monobactams, Macrolides, Clindamycin
Carbapenem Toxicity
CNS toxicity (seizures), GI distress, skin rash
Monobactam drugs
Aztreonam
Monobactam MOA
Bind PBP3, inhibit transpeptidase cross-linking of peptidoglycan, activate autolytic enzymes
Less susceptible to beta-lactamases
Synergistic w/aminoglycosides
No cross-allergicity w/penicillins
Monobactam Clinical Use
GramNeg rods ONLY
These drugs can be used in pts w/renal insufficiency instead of aminoglycosides
Monobactams (Aztreonam)
These drugs are less susceptible to beta-lactamases
Monobactams,
These drugs are beta-lactamase resistant
Carbapenems, Vancomycin, Cephalosporins, Penicillinase-Resistant Penicillins
These drugs should be administered with beta-lactamase inhibitors
Penicillin, Aminopenicillins, Antipseudomonal Penicillins
Monobactam Toxicity
usually nontoxic; occasional GI upset
Vancomycin MOA
binds D-ala-D-ala to inhibit cell wall elongation
Bactericidal
Beta-lactamase resistant
Vancomycin Clinical Use
MRSA, Staph epi, Enterococcus, C. diff
Vancomycin Toxicity
“Red Man’s NOT in the Van”: Red Man Syndrome (antihistamines), Nephrotoxicity, Ototoxicity, Thrombophlebitis
Vancomycin Resistance
amino acid modification of D-ala-D-ala to D-ala-D-lac
This carbapenem has decreased risk of seizures and is stable to dihydropeptidase I in renal tubules
Merepenem
These bugs are NOT covered by Cephalosporins
LAME: Listeria, Atypicals (Chlamydia, Mycoplasma), MRSA (except 5th gen), Enterococci
These drugs bind to 30S subunit to inhibit protein synthesis
“Ami has 30 Tetras”: Aminoglycosides, Tetracyclines
These drugs bind to 50S subunit to inhibit protein synthesis
“CCEL at 50”: Chloramphenicol, Clindamycin, Erythromycin (Macrolides), Linezolid
Aminoglycoside Drugs
GNATS: Gentamicin, Neomycin, Amikacin, Tobramycin, Streptomycin
Aminoglycoside MOA
Bind 30S subunit –> misreading of mRNA, blockage of translocation
Bacteriocidal
Require O2 for uptake (Amin”O2”glycosides)
Aminoglycoside Clinical Use
Severe GramNeg Rod infxns (Ami”NOT”glycoside)
Synergistic w/Beta-lactams
Bowel sterilization for Sx (neomycin)
These drugs are synergistic w/Beta-lactams
Aminoglycosides
This drug is used for bowel sterilization pre-Sx
Neomycin
This aminoglycoside is hepatically excreted
Amikacin
Aminoglycoside Toxicity
“caNNOT kill anaerobes:” Nephrotoxicity, NMJ blockade, Ototoxicity (esp. w/loop diuretics), Teratogen
Aminoglycoside mnemonic
Mean GNATS caNNOT kill anaerobes
Aminoglycoside Resistance
Bacterial tranferase enzymes inactivate via APA: Adenylation, Phosphorylation, Adenylation
Tetracycline Drugs
Tetracycline, Doxycycline, Minocycline, Demeclocycline, Tygecycline
Tetracycline MOA
T’s: Bind to 30S (Thirty) subunit –> prevent tRNA attachment
Accumulate intracellularly
Limited CNS penetration
Ca2+, Mg2+, Fe2+ decrease absorption in gut
This tetracycline is hepatically eliminated
Doxycycline
This tetracycline is commonly used for acne
Minocycline
This tetracycline can be used as a diuretic in SIADH
Demeclocycline
These products inhibit tetracycline absorption
Ca2+, Mg2+, Fe2+
Tetracycline Clinical Use
Borrelia burgdorferi, M. pneumoniae, Rickettsia, Chlamydia, acne
Tetracycline Toxicity
Tummy (GI distress), can’t get Taller (inhibition of bone growth in kids), Tooth discoloration, Teratogenic
Tetracycline Resistance
decreased uptake or increased efflux via plasmid-encoded transport pumps
Chloramphenicol MOA
Blocks peptidyltransferase at 50S subunit
Bacteriostatic
Chloramphenicol Clinical Use
Meningitis (H. flu, N. meningitidis, S, pneumo), Rocky Mtn Spotted Fever (Rickettsia)