F(p) to f(t) Flashcards

1
Q

F(p)

A

Integrale de inf à 0 de f(t) exp(-pt)dt

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

1

A

Dirac(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

1/p

A

Echelon(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

1/p^2

A

Rampe(t)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

n!/p^(n+1)

A

(Rampe^n) ?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

1/(p+a)

A

Exp(-at)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

1/(p+a)^2

A

T*exp(-at)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

n!/(p+a)^n+1

A

t^n*exp(-at)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

1/(p+a)*(p+b)

A

1/b-a * [(exp(-at) - exp(-bt)]

Avec a diff de b

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

p/(p+a)*(p+b)

A

1/b-a * [bexp(-bt) - aexp(-at)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

1/(p+a)p

A

1/a * (1-exp(-at))

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

1/p(p+a)(p+b)

A

1/ab * [1-1/b-a)*(bexp(-at) - aexp(-bt)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

1/(p+a)*p^2

A

1/a^2 * [at-1+exp(-at)]

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

p/(p+a)^2

A

(1-at) * exp(-at)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

1/(a+p)^2*p

A

1/a^2 (1-exp(-at)-atexp(-at)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

1/(p+a)^2*p^2

A

1/a^2 *[t-1/a+(t+2/a)exp(-at)]

17
Q

W/(p^2+W^2)

A

Sin(Wt)

18
Q

P/(p^2+W^2)

A

Cos(Wt)

19
Q

W^2/p*(p^2+W^2)

A

1-cos(Wt)

20
Q

Multiplication de t par un scalaire

x(at)

A

1/a * X(p/a)

21
Q

Translation tempo : retard

x(t-tau)

A

X(p)exp(-taup)

22
Q

Translation tempo : avance

x(t+tau)

A

X(p)exp(+taup)

23
Q

Multiplication par t de x(t)

t*x(t)

A

-dX/dP

24
Q

Multiplication par une exp

x(t)*exp(-at)

A

X(p+a)

25
Q

Multiplication de 2 signaux tempo

x(t)*y(t)

A

X(p) convolution Y(p)

26
Q

Convolution de 2 signaux

x(t) convolution y(t)

A

X(p) * Y(p)

27
Q

Dérivation d’un signal par rapport à t

dx(t)/dt

A

p*X(p)- x(t) pour lim t->0+)

28
Q

Derivation plusieurs degré

d^nx(t) /dt^n

A

p^nX(p)-p^(n-1)x(0+)-p^(n-2)dx(t)/dt-[…]-px^(n-2)(0+)-x^(n-1)(0+)

(pX(p) - p^(n-1)*x(0+)….. et tjr entremele de -, produit p et x(0+) jusqu’a temps fini par atteindre 0 pour p et n-1 pour x(0+)

29
Q

Intégration de signaux par rapport à t

Integrale de t à 0 x(u)du

A

X(p)/p

30
Q

Intégration de signaux à plusieurs degré

Integral de t à 0 integrale de t1 à 0…. integrale de t^n à 0 x(u)dudt1dt2…dt^n

A

X(p)/p^n

31
Q

Théorème de la valeur finale

A

Lim x(t) t-> inf = lim pX(p) p->0

32
Q

Théorème de la valeur initiale

A

Lim x(t) t-> 0 = lim pX(p) p-> inf