Exam 2 Flashcards
Acetyl-CoA. a.) What is its structure? b.) What is its metabolic importance? c.) What is its source? Where does it come from?
- a.) see picture - b.) It is an important intermediate and precursor molecule for TCA, FA biosynthesis, ketone body formation and cholesterol biosynthesis (leading to steroid hormones, bile acids and vit D production) - c.) It is produced as a result of glycolysis, beta-oxidation and AA deamination/oxidation. It is requires presence of vitamin B5.

Pyruvate. a.) What is the fate of pyruvate? b.) What enzyme converts pyruvate to acetyl-CoA? c.) What enzyme converts pyruvate to oxaloacetate? d.) What determines whether pyruvate is used to form acetyl-CoA or oxaloacetate?
- a.) lactate, oxaloacetate, acetyl-CoA and alanine - b.) PDH complex - c.) pyruvate carboxylase - d.) pyruvate carboxylase is allosterically activated by acetyl-CoA. When there is sufficient amount of acetyl-CoA and therefore little need to divert more pyruvate into acetyl-CoA, pyruvate carboxylase converts pyruvate to oxaloacetate.
What is DNP? What is its effect? What symptoms does it cause?
- It is a pesticide and poison that uncouples ETC/ox-phos. It causes sweating, flushing, nausea, inc RR, tachycardia, fever, coma, death in 1-2 days. Treatment with ice baths, oxygen and fluid/electrolyte replacement.
Where are the following glucose transporters found? What are their functions?
- SGLT1: found in small intestine, responsible for actively transporting glucose from lumen into intestinal epithelia. - GLUT1: found in all tissues, responsible for basal glucose uptake - GLUT2: found in liver, intestine and beta-cells of pancreas. In liver: removes glucose from blood. In intestine: releases glucose from epithelia into blood. In pancreas: regulates secretion of insulin. Also able to move fructose. - GLUT3: found in all tissues, responsible for basal glucose uptake - GLUT4: found in muscle and adipose tissue. Increases with endurance training, induced by insulin. - GLUT5: found in small intestine, responsible for uptake of fructose into epithelial cells and movement into blood serum.
Which enzymes of gluconeogenesis are regulated? What factors inhibit and stimulate these enzymes? Which is the main regulated step? Which are reversible/irreversible?
- Pyruvate carboxylase: +: acetyl-CoA; -: insulin - PEP carboxykinase: +: glucagon via cAMP; -: insulin, AMP - Fructose-1,6-bisphosphatase: +: citrate; -: F26BP, AMP (main regulated step) - Glucose-6-phosphatase: +: glucagon; -: insulin
What is MEOS? Explain.
- Microsomal ethanol oxidizing system. This is a P450 cytochrome system that is induced in chronic alcohol abuse and has a higher capacity to process alcohol. Activation of this system causes oxidation of NADPH and weakens the cellular antioxidant defense mechanisms.
Explain how lipids are transported into the mitochondria. Is it in the form of TAGs or FAs?
- FAs are transported into the mitochondria.

Which intermediate during ketone body synthesis can function in another pathway (besides acetyl Co-A)? What pathway? During what environmental conditions will this occur?
- HMG-CoA = beta-hydroxy-beta-methylglutaryl-CoA - This molecule is used in the synthesis of cholesterol. - Will occur in well-fed times
What is the enzyme that commits acetyl-CoA to FA synthesis? What does this reaction do?
- Acetyl-CoA carboxylase, which converts acetyl-CoA to malonyl-CoA
Describe the synthesis of FAs.

Draw function of glucagon presence (insulin absence) in regulation of FA synthesis.

Describe the composition of lipid droplets?
- Lipid droplets are packages containing TAGs. These are surrounding by a protein coat composed of many proteins including perilipin. Perilipin acts as protector of the TAGs stores and prevents lipases, such as hormone sensitive lipases from degrading TAGs into FFA and glycerol. When perilipin is phosphorylated, it allows lipases to do this, but not when dephosphorylated.
What are the three factors that lead to development of fatty liver in chronic alcoholism?
1.) alcohol metabolism in liver generates NADH and acetyl-CoA. High concentration of NADH blocks TCA cycle enzymes and forces acetyl-CoA into FA synthesis. 2.) Beta-hydroxyacyl dehydrogenase (beta-oxidation enzyme) requires NAD, which is at low concentration during alcohol metabolism. This means that FA breakdown by liver is slowed down and leads to accumulation of fat. 3.) Damaged liver tissue has reduced capacity to synthesize VLDLs to export FAs to adipose tissue
Describe synthesis of prostaglandins, thromboxanes and leukotrienes.
1.) Prostaglandins - AA to PGG2 via COX1/2 - PGG2 to PGH2 via PGH synthase - PGH2 is precursor to other prostaglandins via PGD/PGE/PGF synthase enzymes 2.) Thromboxanes - PGH2 to TXA2 via thromboxane synthase - TXA2 to TXB2 via hydrolysis in blood 3.) Leukotrienes - AA to leukotrienes via lipoxygenase and other enzymes
How can prostaglandin synthesis be inhibited? Explain
- NSAIDs and glucocorticosteroids(aka glucocorticoids) inhibit COX1/2 and prostaglandin synthase (PGH synthase)
Name the sphingolipidoses. Name the enzyme defect, accumulated lipid and presentation.
1.) Tay-Sachs Disease Enzyme defect: beta-hexosaminidase A Accumulated lipid: ganglioside GM2 Presentation: mental retardation, blindness, cherry red spot on macula, death before age 3 2.) Gaucher Disease Enzyme defect: beta-glucosidase (beta-cerebrosidase) Accumulated lipid: glucocerebroside Presentation: liver and spleen enlargement, erosion of long bones 3.) Fabry Disease Enzyme defect: alpha-galactosidase Accumulated lipid: ceramide trihexoside Presentation: skin rash, kidney failure 4.) Niemann-Pick Disease Enzyme defect: sphingomyelinase Accumulated lipid: sphingomyelin Presentation: liver and spleen enlargement, mental retardation 5.) Sandhoff Disease Enzyme defect: beta-hexosaminodase A and B Accumulated lipid: GM2 ganglioside and globosides Presentation: similar to Tay-Sachs, progresses more rapidly 6.) Metachromatic Leukodystrophy Enzyme defect: arylsulfatase Accumulated lipid: sulfatide Presentation: mental retardation
Where is cholesterol synthesized, what is the rate-limiting step/enzyme, what is the precursor used, in what other pathway is this precursor seen? What enzyme is used to make this precursor? Is this the same enzyme used in the previous pathway? Explain. During what environmental conditions is the precursor made in both pathways?
- Cholesterol synthesis takes place in the liver, intestine and reproductive tissues - Rate-limiting step = HMG-CoA reductase - Precursor = HMG-CoA – seen during synthesis of ketone bodies - Precursor synthesized by cytosolic HMG-CoA synthase isoform that is active in well-fed state. Mitochondrial HMG-CoA synthase isoform synthesizes the precursor when in starving/fasting state.
How can cholesterol synthesis be inhibited in a clinical setting? Explain how this works.
- Use of statins - Statins inhibit the HMG-CoA reductase enzyme and prevents synthesis of mevalonic acid, a precursor molecule to farnesyl-PP, a precursor to cholesterol.
T2D patients present with high serum LDL even when serum glucose is well controlled. Where does this lipid abnormality originate? Why does it occur?
- Type 2 diabetics are insulin insensitive - As a result of insulin signaling stating to the body that glucose is in abundance and should be taken up, fatty acids are still being released from adipose tissue and the liver has to repackage large amounts of these, which in turn means that LDL levels are high.
What is the malate-aspartate shuttle? Where does it occur? Draw it.
- It is a shuttle mechanism to move electrons from NADH in cytoplasm to the mitochondrion. It occurs in liver and heart.

What are/is disorder(s) that prevent proper use of galactose? Explain.
- Galactosemia - Three types: a.) Classic galactosemia: most common / severe form where there is a galactose-1 phosphate uridyl transferase deficiency b.) Deficiency of galactokinase c.) Deficiency of UDP-galactose epimerase - Results in accumulation of galactose1-phosphate in liver and other tissues (CNS, kidney). Newborns present with milk intolerance and signs of liver failure, cataracts and intellectual disability. Also present with jaundice, lethargy and hepatomegaly. Diagnosis is by detection of galactose or galactose-phosphate in urine. Pts must receive a galactose-free diet (no lactose either, which is a glucose, galactose disaccharide).
Explain how F26BP affects gluconeogenesis. Include details about the enzymes involve, pathways activated and substrates affected.
- Take home message: high concentrations of F26BP inhibit gluconeogenesis, low concentrations of F26BP stimulate gluconeogenesis - F26BP is produced by enzyme PFK2 (produces F26BP from F6P) - Insulin stimulates PFK2 via cAMP leading to increased concentration of F26BP, which causes inhibition of gluconeogenesis via pyruvate carboxylase, PEP carboxykinase and glucose-6-phosphatase - Glucagon inhibits PFK2 via cAMP leading to decreased concentration of F26BP, which causes stimulation of gluconeogenesis via PEP carboxykinase and glucose-6-phosphatase
Explain why NADH concentration increases while NADPH concentration decreases in alcohol-metabolizing cells.
- The main step to handling ethanol in the liver is through two dehydrogenases (alcohol DH and aldehyde DH), both, which produce NADH. - The other way to handle ethanol is through the higher capacity MEOS system, which as a means to process the alcohol, also oxidizes NADPH.
List a few mucopolysaccharidoses. Describe defect and symptoms. Genetics?
- Hunter’s: defect in iduronate sulfatase, accumulation of dermatan sulfate and heparan sulfate. Symptoms = skeletal abnormalities, mental retardation. X-linked recessive. - Hurler-Scheie: defect in alpha-iduronase, accumulation of dermatan sulfate and heparan sulfate. Symptoms = skeletal abnormalities, mental retardation. Autosomal recessive. - Sanfilippo’s: defect of heparan sulfate degradation. Symptoms = mild physical defects, severe mental retardation. Autosomal recessive.




























