Eksamen 1 semester Flashcards
Reproduktiv praksis?
- Befester kunnskap
- Fokuserer på å huske og automatisere
- Innhold og form bestemt av lærer, lærebok og/eller aktiviteten
- Oppgaver og svar ofte gitt på forhånd
Produktiv praksis?
- Utforsking, problemløsning, åpne oppgaver
- Innebærer utvikling av ny kunnskap, læring
av noe nytt - Krever mer initiativ fra elevene
- Flere mulige veier og ofte flere mulige svar
Instrumentell forståelse?
- Kan utenat regler og prosedyrer
- Ikke en dyp forståelse for hvorfor det gjøres
- ser ikke sammenhenger
Rasjonell forståelse?
- Forstår sammenhenger og forhold -> hvorfor ting er slik
Telling - fem viktige ferdigheter?
- Kunne tallrekka
- Forstå en til en korrespondanse (par kobling)
- Vite at det siste tallet i tellingen representerer antallet (krever kardinal forståelse)
- Abstraksjonsprinsippet -> antallet er uavhengig av det vi teller
- Rekkefølgen du teller opp i spiller ingen rolle
Det handler om å skille mellom det å kunne tallremsen og å kunne telle.
Korrespondanse?
Korrespondanse betyr innbyrdes samkvem, samsvar eller overensstemmelse.
Tallene må fungere sammen
Kardinal forståelse?
Kardinaltall er tall som uttrykker størrelsen av en mengde/antall.
Å være kardinaltall er altså ikke en egenskap ved selve tallet, men ved måten vi bruker det på. For å utvikle et godt tallbegrep må man blant annet utvikle forståelse for ulike måter å bruke tallene på.
For eksempel vil tallet 37 opptre som kardinaltall i setningen “Jeg har 37 pizzaer i fryseren”. I en annen setning kan det samme tallet opptre i en annen rolle, for eksempel: “Jeg tar 37-bussen hjem”. Her er 37 et navn - tallet 37 signaliserer ikke nødvendigvis at det finnes 36 andre busser, for eksempel. Se også ordinaltall.
For at barn skal lære kardinaltallbegrepet fullt ut, innebærer det at de kan telle og har en forståelse av antallet de teller og ikke bare det å kunne tallrekken på rams eller som en regle. Rasjonell forståelse
Når vi teller en mengde, må vi, når vi har telt ferdig, foreta en kardinal integrasjon - det vil si at vi knytter det siste tallet vi telte til mengden som helhet.
Abstraksjonsprinsippet?
a. Abstraksjonsprinsippet. Dette er forståelse av at tallene kan brukes til å telle hva som helst, både fysiske og ikke-fysiske ting, også tallordene selv.
b. Telling uavhengig av konkreter. Prinsippet om at man kan telle objektene i en mengde i hvilken som helst rekkefølge. Når forståelse av dette prinsippet er på plass, behersker vanligvis barnet telling godt.
Tallbegrep?
- Kardinaltall = Tallordet forteller om hvor mange
- Ordinaltall = Tallordet forteller om objektets plassering i en serie
- Tall om identitet = Tallordet blir brukt som identifikasjon
Hensikt med tallsystemer?
- skape forståelse for oppbyggingen av en plassverdisystem
- Oppleve selv hvor vansklig det er å lære et tallsystem
- Gi didaktiske innfallsvinkler til innlæring av en plassverdi til innlæring av et plassverdisystem
didaktiske innfallsvinkler?
Relasjonsmodellen framhever for- bindelser og samspill mellom ulike didaktiske elementer. Den poengterer at didaktiske elementer som mål og arbeidsformer ikke kan sees løsrevet fra andre didaktiske elementer som rammefaktorer og elevforutsetninger, men at endringer i et element berører de andre og påvirker helheten i undervisnings- bildet.
- Elev - og lærerforutsettninger
- Mål
- Rammefaktorer
- Arbeidsmåter
- Innhold
- Vurdering
Tallforståelse?
- Evnen til å generalisere og se sammenhenger mellom ny kunnskap og tidligere kunnskap
- Utvikling av god tallforståelse handler om å oppdage stadige nye egenskaper ved tall eller å utvikle rike forestillinger om tall
Grupperingsmodell?
🔷Bygger på kardinaltall - antall
🔷Grupperer tallene i femmere, seksere, tiere
Arbeid med grupperingsmodellen er knyttet til at elevene får erfaring med hvordan vi grupperer og deler opp grupper i posisjonssystemet.
Konkretiseringsmateriell som basemateriell, penger, eggkartonger og tellestreker er representasjonsformer som er knyttet til en grupperingsmodell.
Uttrykt med konkreter kan altså slike grupperinger gjøres ved at vi teller steiner og samler ti og ti steiner i hauger.
Grupperingsmodellen er også med på å utvikle elevens tallbegrep. Fordelene er at den er fin for å lette telling av større mengder og ved regning av større tall er det svært gunstig å gruppere.
Det å danne og dele opp grupper i ti er helt vesentlig for en god tallforståelse og det danner nødvendig grunnlag for mye regning. For eksempel er alle standaralgoritmene nært knyttet til en grupperingsmodell.
Lineær modell?
🔷Har fokus på tallenes rekkefølge og tallstørrelse som helhet
🔷Fokuserer på ordinalitet
Den linære tallmodellen er knyttet til telling og er på mange måter en videreføring av den kompetansen barna har når de kommer til skolen.
Når vi jobber med den lineære modellen tar vi ofte i bruk en tallinje der vi markere både enere og tiere. Vi kan også ta i bruk en tom tallinje uten markeringer eller en perlesnor.
Den linære modellen har mange fordeler. Den er med på å gi barna en rikere tallforståelse. Den gir elevene gode ferdigheter i telling. Elevene vil kunne se sammenhengen mellom tallenes rekkefølge og mengden tallene representerer.
Å arbeide med den linære modelllen styrker elevenes hoderegning og elevene vil kunne utvikle gode strategier for å løse addisjons- og subtraksjonsoppgaver.
Viktigheten med grupperingsmodell og lineær modell?
Det er viktig å jobbe med både den lineære tallmodellen og grupperingsmodellen i undervisningen slik at elevene blir fortrolige med begge modellene og kan se at de har en sammenheng.
Modellene utfyller og beriker hverandre og sammen gir de to modellene elevene økt tallforstålse og bedre regneferdigheter.
Additive strukturer
Endre
Økning
5 + __ = 8 (ukjent tillegg)
5 + 3 = __ (ukjent slutt)
__+ 3 = 8 (ukjent start)
Minsking
8 - __ = 5 (ukjent reduksjon)
8 - 3 = __ (ukjent resultat)
__ - 3 = 5 (ukjent start)
🔷Ulike situasjoner, samme regnestykke
Additive strukturer
Kombinere
Slå sammen
- 3 blå kuler og 5 røde. Hvor mange kuler har hun?
Separere
- Per og Mari har 8 kuler til sammen. Hvis Per har 5, hvor mange har da Mari?
🔷Spor av ulik tenkning ser vi i regnestrategier