Completing the square Flashcards
1
Q
When is completing the square used?
A
To find the max/min point on a curve or its line of symmetry
2
Q
Example 1: Write x^2+8x+6 in the form (x+a)^2+b, where a and b are constants
A
First of all, constants just means numbers. Also, (x+a)^2+b means complete the square. x^2+8x+6 1. Half the x number (e.g. 8): 8/2=4. This is your a value 2. Write the a value in: (x+4)^2-4^2+b. Notice how we minus 4^2, we always minus the a value squared after the brackets. 3. Write the extra number on the end (the b bit is also the extra number without the x, in this case a 6): (x+4)^2-4^2+6 4. Simplify and solve: (x+4)^2-16+6 (x+4)^2-10 a=4 b=-10
3
Q
Example 2: x^2-6x-3=(x-a)^2-b where a and b are constants. Find the values of a and b.
A
x^2-6x-3 1) -6/2=-3 a=-3 2) (x-3)^2-(-3)^2 3) (x-3)^2-(-3)^2-3 4) (x-3)^2-9-3 (x-3)^2-12 a=-3, b=-12
4
Q
Example 3: Write in the form (x+a)^2+b. Find the values of and a b: x^2-9x+3
A
x^2-9x+3 Method 1 (calculator): 1) (x-4.5)^2-(4.5)^2 2) (x-4.5)^2-(4.5)^2+3 3) (x-4.5)^2-20.25+3 4) (x-4.5)^2-17.25 5) a=-4.5, b=-17.25 Method 2 (non-calculator): 1) (x-9/2)^2-(-9/2)^2 2) (x-9/2)^2-(-9/2)^2+3 3) (x-9/2)^2-81/4+3 4) (x-9/2)^2-81/4+3/1 5) (x-9/2)^2-81/4+12/4 6) (x-9/2)^2-69/4 7) a=-9/2, b=-69/4