Clinical Neurology Flashcards
A common sign of multiple sclerosis
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Most often associated with large destructive lesions of the pons
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Seen exclusively in infants
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Associated with lesions of the cervicomedullary junction
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Associated with lesions of the parasellar region
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Associated with lesions of the parietal lobe
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Associated with lesions of the pineal region
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
A. Convergence nystagmus
B. Dissociated nystagmus (internuclear ophthalmoplegia)
C. Downbeat nystagmus
D. Impairment of optokinetic nystagmus
E. Ocular bobbing
F. Seesaw nystagmus
G. Spasmus mutans
Convergence nystagmus (A) is a “rhythmic oscillation in w hich a slow abduction
of the eyes with respect to each other is followed by a quick movement
of adduction,” and may be accompanied by other signs of Parinaud’s phenomenon,
suggesting a lesion of the pineal region or midbrain tegmentum.
Dissociated nystagmus (B) is horizontal nystagmus that occurs only in the
abducting eye—this is a sign of internuclear ophthalmoplegia and is associated
with multiple sclerosis. Downbeat nystagmus (C) has been associated
with lesions of the cervicomedullary junction including Chiari malformation,
syrinx, and basilar invaginat ion. Impairment of optokinetic nystagmus (D)
is associated with lesions to the parietal lobe—“the slow pursuit phase of the
OKN may be lost . . . when a moving st imulus . . . is rotated toward the side of
the lesion.” Ocular bobbing (E) involves a “spontaneous fast downward jerk
of the eyes followed by a slow upward drift to midposition,” and has been associated
with large destruct ive lesions of the pons. Seesaw nystagmus (F) is
a “torsional-vertical oscillation in which the intorting eye moves up and the
opposite (extort ing) eye moves down, then both move in the reverse direction.”
Seesaw nystagmus (F) has been associated w ith chiasmatic bitemporal
hemianopsia due to lesions of the parasellar region. Spasmus mutans (G) is
a pendular nystagmus of infancy that is typically idiopathic and self-limited.1
Which of the following is false of seizure foci?
A. Epileptic foci are slower in binding and removing acetylcholine than normal
cortex.
B. Firing of neurons in the focus is re ected by periodic spike discharges in the
electroencephalogram (EEG).
C. If unchecked, cortical excitation may spread to the subcortical nuclei.
D. Neurons surrounding the focus are initially hyperpolarized and are
GABAergic.
E. The change in seizure discharge from the tonic phase to the clonic phase
results from inhibition from the neurons surrounding the focus.
A. Epileptic foci are slower in binding and removing acetylcholine than normal
cortex.
B. Firing of neurons in the focus is re ected by periodic spike discharges in the
electroencephalogram (EEG).
C. If unchecked, cortical excitation may spread to the subcortical nuclei.
D. Neurons surrounding the focus are initially hyperpolarized and are
GABAergic.
E. The change in seizure discharge from the tonic phase to the clonic phase
results from inhibition from the neurons surrounding the focus.
The change from the tonic to the clonic phase results from diencephalic
inhibition of the ring cortex, not from inhibit ion of the neurons surrounding
the focus as described in (E). The other statements are true: Epileptic foci
are slower in binding and removing acetylcholine than normal cortex (A);
ring of neurons in the focus is re ected by periodic spike discharges in the
electroencephalogram (B); if unchecked, cortical excitation may spread to
the subcort ical nuclei (C); and neurons surrounding the focus are initially
hyperpolarized and are GABAergic (D).1
An abnormal optokinetic response is more likely to be obtained by rotating the
optokinetic nystagmus drum
A. Away from an occipital lobe lesion
B. Away from a parietal lobe lesion
C. Toward an occipital lobe lesion
D. Toward a parietal lobe lesion
E. Toward a temporal lobe lesion
A. Away from an occipital lobe lesion
B. Away from a parietal lobe lesion
C. Toward an occipital lobe lesion
D. Toward a parietal lobe lesion
E. Toward a temporal lobe lesion
An abnormal optokinetic response (loss of the slow pursuit phase) is more
likely to be obtained by rotating the optokinetic nystagmus drum toward a
parietal lobe lesion (D).1
4 to 7 Hz
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
Normally may be present over the temporal lobes of the elderly
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
Recorded from the frontal lobes symmetrically
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
Associated with absence seizures
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
Attenuated or abolished with eye opening or mental activity
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
A. Alpha
B. Beta
C. Delta
D. Theta
E. 3-per-second spike and wave
Alpha waves (A) are 8–12 Hz waves that are present in the occipital and parietal
region and are at tenuated or abolished with eye opening or mental
activity. Beta waves (B) are of faster frequency (. 12 Hz) and lower amplitude
than a waves and are recorded from the frontal areas symmetrically.
Theta waves (D) are 4–7 Hz, and m ay be present over the temporal regions—
especially in the elderly. Delta waves (C) are 1–3 Hz and are not present in
the normal waking adult. A 3-per-second spike and wave (E) EEG pat tern is
associated with absence seizures.1
Which of the following drugs is least e ective in the treatment of trigeminal
neuralgia?
A. Baclofen
B. Carbamazepine
C. Clonazepam
D. Phenytoin
E. Ketorolac tromethamine (Toradol)
A. Baclofen
B. Carbamazepine
C. Clonazepam
D. Phenytoin
E. Ketorolac tromethamine (Toradol)
Of the options listed, ketorolac (Toradol [E]), a nonsteroidal ant i-in ammatory
drug (NSAID), is the least e ect ive in relieving the pain of trigeminal
neuralgia. Anticonvulsants such as carbamazepine (B), clonazepam (C), and
phenytoin (D) are often useful. Baclofen (A) is m ost helpful as an adjunct to
one of the ant iconvulsant drugs.1
Which of the following is true of papilledema?
A. Absence of venous pulsations is a reliable indicator of papilledema.
B. Pupillary light re exes remain normal.
C. The congested capillaries derive from the central retinal vein.
D. Unilateral edema of the optic disk is never seen.
E. Visual acuity usually decreases.
A. Absence of venous pulsations is a reliable indicator of papilledema.
B. Pupillary light re exes remain normal.
C. The congested capillaries derive from the central retinal vein.
D. Unilateral edema of the optic disk is never seen.
E. Visual acuity usually decreases.
Venous pulsations are absent in 10 to 15% of normal individuals (A is
incorrect). The congested capillaries are derived from the short ciliary arteries
(C is incorrect). Unilateral edema can occur with optic nerve tumors
(D is incorrect). Visual acuity is usually normal in papilledema (E is incorrect).
Pupillary light re exes typically remain normal in papilledema (B).1
Which of the following can occur in glossopharyngeal neuralgia?
I. Pain in the throat
II. Syncope
III. Pain in the ear
IV. Bradycardia
A. I, II, III
B. I, III
C. II, IV
D. IV
E. All of the above
Glossopharyngeal neuralgia is less common than t rigeminal neuralgia and
is characterized by pain in the throat (I) that is often exacerbated by swallowing,
talking, or yawning. Pain may also radiate to the ear (III). Abnormal
a erent inputs to cardioregulatory centers may trigger syncope (II) or
bradycardia (IV), which are not associated with trigeminal neuralgia or hemifacial
spasm.1
Features of trisomy 13 (Patau’s syndrome) include
I. Microcephaly
II. Hypertonia
III. Cleft lip and palate
IV. Dextrocardia
A. I, II, III
B. I, III
C. II, IV
D. IV
E. All of the above
Trisomy 13, or Patau’s syndrome, is characterized by microcephaly (I),
hypertonia (II), cleft lip and palate (III), and dextrocardia (IV). Other features
of this dysgenetic syndrome include corneal opacities, polydactyly, impaired
hearing, and severe mental retardat ion. Death usually occurs in early childhood.
Trisomy 18, Edwards’ syndrome, is characterized by low-set ears,
micrognathia, mental retardation, and rocker-bot tom feet.1
Which of the following is not a feature of Parinaud’s syndrome?
A. Dissociated light–near response
B. Lid retraction
C. Nystagmus retractorius
D. Paralysis of upgaze
E. Third nerve palsy
A. Dissociated light–near response
B. Lid retraction
C. Nystagmus retractorius
D. Paralysis of upgaze
E. Third nerve palsy
Parinaud’s syndrome (dorsal midbrain syndrome) is a constellat ion of symptoms
that include paralysis of upgaze (D), mydriasis and lid retraction (B),
nystagmus retractorius (C), and a dissociated light-near response (A).
Third nerve palsy (E) is not associated w ith Parinaud’s syndrome.1
Which of the following is true of tuberculous meningitis?
A. Headache is usually absent.
B. If untreated, the clinical course is self-limited.
C. The in ammatory exudate is con ned to the subarachnoid space.
D. The in ammatory exudate is found mainly at the convexities.
E. The protein content of the cerebrospinal uid (CSF) is almost always
elevated
A. Headache is usually absent.
B. If untreated, the clinical course is self-limited.
C. The in ammatory exudate is con ned to the subarachnoid space.
D. The in ammatory exudate is found mainly at the convexities.
E. The protein content of the cerebrospinal uid (CSF) is almost always
elevated
Headache occurs in more than half of cases (A is incorrect). Confusion, coma,
and death usually result if the patient is unt reated (B is incorrect). The inammatory
exudate occurs mainly in the basal meninges and frequently invades
the underlying brain by spreading via pial vessels (C is incorrect). The
CSF protein is always elevated to 100 to 200 mg/dL or higher (E).1
Which of the following CSF ndings is least suggest ive of acute multiple sclerosis?
A. An IgG index greater than 1.7
B. Increased myelin basic protein
C. Increased protein to 200 mg/dL
D. Presence of oligoclonal bands
E. Slight to moderate monocytic pleocytosis
A. An IgG index greater than 1.7
B. Increased myelin basic protein
C. Increased protein to 200 mg/dL
D. Presence of oligoclonal bands
E. Slight to moderate monocytic pleocytosis
The CSF protein is slightly increased in 40% of pat ients with multiple
sclerosis (MS). A concent rat ion of . 100 mg/dL is rare (C). If the ratio of
CSF IgG/serum IgG to CSF albumin/serum albumin is more than 1.7, the
diagnosis of MS is probable (A). This ratio is known as the IgG index. Testing
for oligoclonal bands (D) in CSF is the most widely used test for MS. Increased
CSF myelin basic protein (B) can be present in acute MS exacerbations
and is therefore consistent with a diagnosis of MS; however, increased
MBP may be present in any process where myelin is destroyed. A slight to
moderate monocytic pleocytosis (E) is present in approximately one-third
of MS patients.1
- Each of the following is true of myasthenia gravis except
A. A decrementing response to peripheral nerve stimulation is typical.
B. Aminoglycoside antibiotics may worsen the symptoms.
C. Females are more frequently a ected in the , 40 age group.
D. Females predominate in the subset of patients with a thymoma.
E. Ten to 15% of patients have no antibodies to the acetylcholine receptor.
A. A decrementing response to peripheral nerve stimulation is typical.
B. Aminoglycoside antibiotics may worsen the symptoms.
C. Females are more frequently a ected in the , 40 age group.
D. Females predominate in the subset of patients with a thymoma.
E. Ten to 15% of patients have no antibodies to the acetylcholine receptor.
The majorit y of patients with myasthenia gravis harboring a thymoma are
older (50–60 years) and male (D is false). The disease is two to three times
more common in women than men in patients , 40 years of age (C is true).
A decrease in muscle action potential with nerve st imulation at 3 Hz (a decrement
ing response) is seen (A is true). Certain aminoglycoside ant ibiot ics
can impair transmit ter release by inhibit ing calcium ion uxes at the neuromuscular
junction (B is true). Ten to 15% of patients have no ant ibodies to the
acetylcholine receptor (E is true)
- A defect in mitochondrial DNA is found in each of the following disorders except
A. Kearns-Sayre syndrome
B. Leber’s hereditary optic atrophy
C. Leigh’s subacute necrotizing encephalopathy
D. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke
(MELAS)
E. Menkes’ syndrome
A. Kearns-Sayre syndrome
B. Leber’s hereditary optic atrophy
C. Leigh’s subacute necrotizing encephalopathy
D. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke
(MELAS)
E. Menkes’ syndrome
Menkes’ (kinky hair) syndrome (E) is a rare sex-linked recessive disease characterized
by severe copper de ciency due to failure of intest inal absorption of
copper. The other disorders (Kearns-Sayre syndrome [A], Leber’s hereditary
optic atrophy [B], Leigh’s subacute necrotizing encephalopathy [C], and
mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke
[MELAS; D]) have point m utations or deletions of m itochondrial DNA as part
of their pathogenesis.1
Symptoms of spontaneous carotid artery dissection include
I. Dysgeusia
II. Eye pain
III. Tongue weakness
IV. Horner’s syndrome
A. I, II, III
B. I, III
C. II, IV
D. IV
E. All of the above
Symptoms of spontaneous carot id arter y dissection may include eye pain (II)
or unilateral headache as well as the presence of a Horner’s syndrome (IV)
that is due to the disruption of sympathet ic nerves running along the carot id
artery. Signs of ischemia in the territory of the a ected internal carotid artery
may be present. Small branches o of the carot id artery may supply the cranial
nerves extracranially; ischemia to these branches may lead to cranial nerve
dysfunction such as dysgeusia (impaired taste, I) or tongue weakness (III).1