Chapter Seven: Trigonometric Identities Flashcards
pythagorean identity
cos2x + sin2x = 1
tangent version of pythagorean identity
1 + tan2x = sec2x
cotangent version of pythagorean identity
1 + cot2x = csc2x
sine of a sum of angles
sin(x1 + x2) = sinx1cosx2 + cosx1sinx2
sine of a difference of angles
sin(x1 - x2) = sinx1cosx2 - cosx1sinx2
cosine of a sum of angles
cos(x1 + x2) = cosx1cosx2 - sinx1sinx2
cosine of a difference of angles
cos(x1 - x2) = cosx1cosx2 + sinx1sinx2
tangent of a sum of angles
tan(x1 + x2) = (tanx1 + tanx2) / (1 - tanx1tanx2)
- plus sign on top, minus sign on bottom
tangent of difference of angles
tan(x1 - x2) = (tanx1 - tanx2) / (1 + tanx1tanx2)
- minus on top plus on bottom
double angle identity for sine
sin(2x) = 2sinxcosx
double angle identity for cosine
cos2x = cos2x - sin2x
cos2x = 2cos2x - 1
cos2x = 1 - 2sin2x
double angle identity for tangent
tan2x = (2tanx) / (1 - tan2x)
how do you prove cofunction identities?
use the sum and difference identities
cofunction identity for cosine
cos(x - π/2) = sinx
cofunction identity for sine
sin(x - π/2) = -cosx