Chapter 6 – Key Concepts Flashcards
1
Q
What is the inner product of two vectors u and v?
A
If u = [u1 … un] and v = [v1 … vn], then their inner product is given as:
uTv = u⋅v = uas row matrix vas col. matrix = u1v1 + … + unvn
2
Q
Let u, v, and w be vectors in Rn, and let c be a scalar. Evaluate the following:
a. u⋅v = ? (How do they commute?)
b. (u+v)⋅w = ? (How do they distribute?)
c. (cu)⋅v = (How do they associate?)
d. u⋅u (≥ or ≤) 0? u⋅u = 0 ⇔ u = ?
A
a. u⋅v = v⋅u
b. (u+v)⋅w = u⋅w+v⋅w
c. (cu)⋅v = c(u⋅v) = u⋅(cv)
d. u⋅u ≥ 0, u⋅u = 0 ⇔ u = 0
3
Q
A