Chapter 23 - Integration 2 (Pure) Flashcards
∫ (ax+b) ⁿ =?
∫ (ax+b) ⁿ = 1/ a (n+1) (ax+ b) ⁿ + C
∫ 1/x = ?
∫ 1/x = ln [x] + c
∫ 1/ ax + b = ?
∫ 1/ ax + b = 1 / a ln [ ax+ b ] + C
∫ e^ax dx = ?
∫ e^x dx = 1/a e^x + c
∫ e^ (ax + b ) = ?
∫ e^ (ax + b ) = 1/a e^(ax + b ) + C
∫ sin ax dx = ?
∫ sinx dx = - 1/ a cosx + c
∫ cos ax dx = ?
∫ cosx dx = 1/a sin x + c
∫ sec² x = ?
∫ sec² x = 1/a tan ax + c
∫ f’(x) / f(x) = ?
∫ f’(x) / f(x) dx = ln [f(x)] + c
∫ du/dx f’(u) dx = ?
∫ du/dx f’(u) dx = f (u) + C
the double angle formula, for sin(2A) = ?
sin(2A) = 2 sin A cos A
the double angle formula, for cos(2A) = ?
cos(2A) = cos²A - sin²A
the double angle formula for tan 2A = ?
tan 2A = (2 tan A)/ (1- tan²A)
what’s ‘sexy tans’ ?
sec²x = 1 + tan²x
what’s ‘cosey cots’ ?
cosec² x = 1 + cot² x