Chapter 10 Flashcards
1
Q
A parabola with a vertical axis
- standard form?
- equation to find the directrix?
- focus point?
- other points if p > 0?
- other points if p < 0?
A
- (x - h)^2 = 4p(y - k)
- y = k - p
- (h, k + p)
- (h - 2p, k + p), (h + 2p, k + p)
- (h - |2p|, k + p), (h + |2p|, k + p)
2
Q
A parabola with a horizontal axis
- standard form?
- equation to find the directrix?
- focus point?
- other points if p > 0?
- other points if p < 0?
A
- (y - k)^2 = 4p(x - h)
- x = h - p
- (h + p, k)
- (h + p, k + 2p), (h + p, k - 2p)
- (h + p, k + |2p|), (h + p, k - |2p|)
3
Q
An ellipse whose major axis is horizontal
- standard form?
- foci?
- vertices?
- co-vertices?
A
- (x - h)^(2)/a^2 + (y - k)^(2)/b^2 = 1 *a > b
- (h ± c, k) *c^2 = a^2 - b^2
- (h ± a, k)
- (h, k ± b)
4
Q
An ellipse whose major axis is vertical
- standard form?
- foci?
- vertices?
- co-vertices?
A
- (x - h)^(2)/b^2 + (y - k)^(2)/a^2 = 1 *a > b
- (h, k ± c) *c^2 = a^2 - b^2
- (h, k ± a)
- (h ± b, k)
5
Q
A hyperbola whose transverse axis is horizontal
- standard form?
- vertices?
- co-vertices?
- foci?
A
- (x - h)^(2)/a^2 - (y - k)^(2)/b^2 = 1
- (h ± a, k)
- (h, k ± b)
- (h ± c, k) *c^2 = a^2 + b^2
6
Q
A hyperbola whose transverse axis is vertical
- standard form?
- vertices?
- co-vertices?
- foci?
A
- (y - k)^(2)/a^2 - (x - h)^(2)/b^2 = 1
- (h, k ± a)
- (h ± b, k)
- (h, k ± c) *c^2 = a^2 + b^2
7
Q
Eccentricity of an Ellipse
A
e = c/a
8
Q
dy/dx = ?
A
(dy/dt)/(dx/dt) *t and θ both work in this formula
9
Q
d^(2)y/dx^(2) = ?
A
d/dt[dy/dx]/(dx/dt) *t and θ both work in this formula
10
Q
Arc length
A
integral from “a” to “b”: [square root of: (dx/dt)^2 + (dy/dt)^2) * dt]
11
Q
Polar Arc length
A
integral from “α” to “β”: [square root of: r^2 + (dr/dθ)^2) * dθ]
12
Q
Polar Area
A
(1/2) * integral from “α” to “β”: [(r(θ))^2 * dθ]